Skip to main content
Log in

Salicylic Acid Modulates Antioxidant System, Defense Metabolites, and Expression of Salt Transporter Genes in Pisum sativum Under Salinity Stress

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

At present plants continuously exposed to salinity stress due to the challenging environment that has reduced the crop growth and productivity worldwide. Application of phytohormones by using seed priming method emerges as one of the most reliable and cost effective to alleviate the toxic effect of salinity stress. In this study, we evaluate the effect of seed-primed salicylic acid (SA) to reduce the adverse effect of different salt concentrations (0, 100, 200, and 300 mM NaCl) in pea (Pisum sativum L.) seedlings. After seedling emergence, percent seed germination was calculated; however, after 60 days; plants were sampled for studying the growth and photosynthetic traits, lipid peroxidation level, antioxidant activities, ions accumulation, and its sequestration. The results depicted that salinity treatments hampered overall growth performance and induced oxidative stress in a dose-dependent manner. Salinity also has negatively influence on ion accumulation as Na+ ion increased while K+ ion decreased. On the other hand, seed priming with SA significantly reduced the salinity-induced effects on the overall performance of plants, including growth and photosynthetic attributes. SA alleviated the adverse effect of salinity even at higher salinity level by inducing enzymatic and non-enzymatic antioxidant systems, soluble sugars, and proline accumulation, and regulating ion homeostasis along with up-regulation of Na+/H+ antiporters (SOS1 and NHX1). Thus, seed priming with SA shows a comprehensive role in mitigation of salinity stress and can be used as a model for promising salinity tolerant cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abo-Doma A, Edrees S, Abdel-Aziz SH (2016) The effect of mycorrhiza growth and expression of some genes in barley. Egypt J Genet Cytol 40:301–313. https://doi.org/10.21608/ejgc.2011.10794

    Article  Google Scholar 

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signal. Science 311:91–94

    Article  CAS  PubMed  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Afzal I, Basra S, Iqbal A (2005) The effect of seed soaking with plant growth regulators on seedling vigor of wheat under salinity stress. J Stress Physiol Biochem 1:6–14

    Google Scholar 

  • Ahanger MA, Agarwal RM (2017) Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L.) as influenced by potassium supplementation. Plant Physiol Biochem 115:449–460

    Article  CAS  PubMed  Google Scholar 

  • Ahanger MA, Aziz U, Alsahli AA, Alyemeni MN, Ahmad P (2019) Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis. Biomolecules 10:42. https://doi.org/10.3390/biom10010042

    Article  CAS  PubMed Central  Google Scholar 

  • Albaladejo I, Meco V, Plasencia F, Flores FB, Bolarin MC, Egea I (2017) Unravelling the strategies used by the wild tomato species Solanum pennellii to confront salt stress: from leaf anatomical adaptations to molecular responses. Environ Exp Bot 135:1–12

    Article  CAS  Google Scholar 

  • Anjum NA, Sofo A, Scopa A, Roychoudhury A, Gill SS, Iqbal M et al (2015) Lipids and proteins—major targets of oxidative modifications in abiotic stressed plants. Environ Sci Pollut Res 22:4099–4121

    Article  CAS  Google Scholar 

  • Arias C, Serrat X, Moysset L, Perissé P, Nogués S (2018) Morphophysiological responses of alamo switchgrass during germination and early seedling stage under salinity or water stress conditions. Bioenergy Res 11:677–688. https://doi.org/10.1007/s12155-018-9930-3

    Article  CAS  Google Scholar 

  • Ayaz FA, Kadioglu A, Turgut R (2000) Water stress effects on the content of low molecular weight carbohydrates and phenolic acids in Ctenanthe setosa (Rose.) Eichler. Can J Plant Sci 80:373–378

    Article  CAS  Google Scholar 

  • Bates LS, Wadern RP, Teare ID (1973) Rapid estimation of free proline for water stress determination. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200

    Article  CAS  Google Scholar 

  • Boukraâ D, Benabdelli K, Belabid L, Bennabi F (2013) Effect of salinity on chickpea seed germination pre-treated with salicylic acid. Sci J Biol Sci 2:86–93

    Google Scholar 

  • Cabot C, Sibole JV, Barceló J, Poschenrieder C (2014) Lessons from crop plants struggling with salinity. Plant Sci 226:2–13. https://doi.org/10.1016/j.plantsci.2014.04.013

    Article  CAS  PubMed  Google Scholar 

  • Chawla S, Jain S, Jain V (2013) Salinity induced oxidative stress and antioxidant system in salt-tolerant and salt-sensitive cultivars of rice (Oryza sativa L.). J Plant Biochem Biotechnol 22:27–34

    Article  CAS  Google Scholar 

  • Chen C, Wang C, Liu Z, Liu X, Zou L, Shi J, Chen S, Chen J, Tan M (2018) Variations in physiology and multiple bioactive constituents under salt stress provide insight into the quality evaluation of Apocyni Veneti Folium. Int J Mol Sci 19:3042

    Article  PubMed Central  CAS  Google Scholar 

  • Coskun D, Britto DT, Jean YK, Kabir I, Tolay I, Torun AA et al (2013) K+ efflux and retention in response to NaCl stress do not predict salt tolerance in contrasting genotypes of rice (Oryza sativa L.). PLoS ONE 8:e57767. https://doi.org/10.1371/journal.pone.0057767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dantas BF, De Sá RL, Aragão CA (2007) Germination; initial growth and cotyledon protein content of bean cultivars under salinity stress. Rev Bras Sementes 29:106–110

    Article  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu GH, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  CAS  PubMed  Google Scholar 

  • El-Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45:215–224

    Article  CAS  Google Scholar 

  • Farhangi-Abriz S, Ghassemi-Golezani K (2018) How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicol Environ Saf 147:1010–1016. https://doi.org/10.1016/j.ecoenv.2017.09.070

    Article  CAS  PubMed  Google Scholar 

  • Forghani AH, Almodares A, Ehsanpour AA (2020) The role of gibberellic acid and paclobutrazol on oxidative stress responses induced by in vitro salt stress in sweet sorghum. Russ J Plant Physiol 67:555–563

    Article  CAS  Google Scholar 

  • Foti C, Khah EM, Pavli OI (2019) Germination profiling of lentil genotypes subjected to salinity stress. Plant Biol 21:481–486. https://doi.org/10.1111/plb.12714

    Article  CAS  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Bharti A (2018) Salicylic acid improves arbuscular mycorrhizal symbiosis, and chickpea growth and yield by modulating carbohydrate metabolism under salt stress. Mycorrhiza 28:727–746. https://doi.org/10.1007/s00572-018-0856-6

    Article  CAS  PubMed  Google Scholar 

  • Ghassemi-Golezani K, Nikpour-Rashidabad N (2017) Seed pretreatment and salt tolerance of dill: osmolyte accumulation, antioxidant enzymes activities and essence production. Biocat Agric biotechnol 12:30–35

    Article  Google Scholar 

  • Giannopotitis CN, Ries SK (1977) Superoxide dismutase in higher plants. Plant Physiol 59:309–314

    Article  Google Scholar 

  • Gunes A, Anal A, Alpaslan M, Eraslan F, Bagci EG, Cick N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164:728–736

    Article  CAS  PubMed  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom. https://doi.org/10.1155/2014/701596

    Article  Google Scholar 

  • Hamid M, Ashraf MY, Rehman KU, Arshad M (2008) Influence of salicylic acid seed priming on growth and some biochemical attributes on wheat growth under saline conditions. Pak J Bot 40:361–367

    CAS  Google Scholar 

  • Hao JH, Dong CJ, Zhang ZG, Wang XL, Shang QM (2012) Insights into salicylic acid responses in cucumber (Cucumis sativus L.) cotyledons based on a comparative proteomic analysis. Plant Sci 187:69–82. https://doi.org/10.1016/j.plantsci.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87

    Chapter  Google Scholar 

  • Homme PM, Gonalez B, Billard J (1992) Carbohydrate content, fructan and sucrose enzyme activities in roots, stubble and leaves of rye grass (Lolium perenne L.) as affected by source and sink modification after cutting. J Plant Physiol 140:282–291

    Article  Google Scholar 

  • Husen A, Iqbal M, Sohrab SS et al (2018) Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). Agric Food Secur 7:44. https://doi.org/10.1186/s40066-018-0194-0

    Article  Google Scholar 

  • Hussein M, Nadia EL, Gereadly HM, EL-Desuki M (2006) Role of puterscine in resistance to salinity of pea plants (Pisum sativum L.). J Appl Sci Res 2:598–604

    Google Scholar 

  • Isayenkov SV, Maathuis FJ (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2013) Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K(+) loss via a GORK channel. J Exp Bot 64:2255–2268. https://doi.org/10.1093/jxb/ert085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jini D, Joseph B (2017) Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Sci 24:97–108

    Article  Google Scholar 

  • Kang HM, Saltveit ME (2002) Antioxidant enzymes and DPPH-radical scavenging activity in chilled and heat shocked rice (Oryza sativa L.) seedlings radicles. J Agric Food Chem 50:513–518

    Article  CAS  PubMed  Google Scholar 

  • Katschnig D, Bliek T, Rozema J, Schat H (2015) Constitutive high-level SOS1 expression and absence of HKT1; 1 expression in the salt-accumulating halophyte Salicornia dolichostachya. Plant Sci 234:144–154. https://doi.org/10.1016/j.plantsci.2015.02.011

    Article  CAS  PubMed  Google Scholar 

  • Khan MI, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74. https://doi.org/10.1016/j.plaphy.2014.03.026

    Article  CAS  PubMed  Google Scholar 

  • Khodary SEA (2004) Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. Int J Agric Biol 6:5–8

    CAS  Google Scholar 

  • Kirk JTO, Allen RL (1965) Dependence of chloroplast pigments synthesis on protein synthetic effects on actilione. Biochem Biophys Res Commun 27:523–530

    Article  Google Scholar 

  • Kováčik J, Grúz J, Bačkor M, Strnad M, Repčák M (2009) Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants. Plant Cell Rep 28:135–143

    Article  PubMed  CAS  Google Scholar 

  • Li T, Hu Y, Du X, Tang H, Shen C, Wu J (2014) Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PLoS ONE 9:109492

    Article  CAS  Google Scholar 

  • Lin J, Wang Y, Sun S, Mu C, Yan X (2017) Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt alkali stress and nitrogen deposition. Sci Total Environ 576:234–241

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) The original method. J Biol Chem 193:265

    Article  CAS  PubMed  Google Scholar 

  • Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth, management practices to prevent and mitigate soil salinization. Horticulturae 3:30

    Article  Google Scholar 

  • Maehly A, Chance B (1954) The assay of catalases and peroxidases. In: Methods of biochemical analysis, pp 357–424

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2008) The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J 56:613–626

    Article  CAS  PubMed  Google Scholar 

  • Matthews JSA, Vialet-Chabrand SRM, Lawson T (2017) Diurnal variation in gas exchange: the balance between carbon fixation and water loss. Plant Physiol 174:614–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald S, Prenzler PD, Autolovich M, Robards K (2001) Phenolic content and antioxidant activity of olive extracts. Food Chem 73:73–84

    Article  CAS  Google Scholar 

  • Mimouni H, Wasti S, Manaa A, Gharbi E, Chalh A, Vandoorne B, Lutts S, Ahmed HB (2016) Does salicylic acid (SA) improve tolerance to salt stress in plants? A study of SA effects on tomato plant growth, water dynamics, photosynthesis, and biochemical parameters. OMICS 20:180–190. https://doi.org/10.1089/omi.2015.0161

    Article  CAS  PubMed  Google Scholar 

  • Misra N, Misra R, Mariam A, Yusuf K, Yusuf L (2014) Salicylic acid alters antioxidant and phenolics metabolism in Catharanthus roseus grown under salinity stress. Afr J Tradit Compl Altern Med 11:118–125. https://doi.org/10.4314/ajtcam.v11i5.19

    Article  CAS  Google Scholar 

  • Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y (2013) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid induced accumulation of reactive oxygen species in Arabidopsis. Plant J 73:91–104

    Article  CAS  PubMed  Google Scholar 

  • Mukerji KG (2004) Fruit and vegetable diseases. Kluwer Academic Publishers, Hingham, p 145

    Book  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C et al (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364

    Article  CAS  PubMed  Google Scholar 

  • Mutlu S, Atici Ö, Nalbantoglu B (2009) Effects of salicylic acid and salinity on apoplastic antioxidant enzymes in two wheat cultivars differing in salt tolerance. Biol Plant 53:334–338

    Article  CAS  Google Scholar 

  • NakanoY AK (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    Google Scholar 

  • Nazar R, Umar S, Khan NA, Sareer O (2015) Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. S Afr J Bot 98:84–94

    Article  CAS  Google Scholar 

  • Nimir NEA, Lu S, Zhou G, Ma BL, Guo W, Wang Y (2014) Exogenous hormones alleviated salinity and temperature stresses on germination and early seedling growth of sweet sorghum. Agron J 106:2305–2315. https://doi.org/10.2134/agronj13.0594

    Article  CAS  Google Scholar 

  • Noreen S, Ashraf M, Akram NA (2011) Does exogenous application of salicylic acid improve growth and some key physiological attributes in sunflower plants subjected to salt stress? J Appl Bot Food Qual 84:169–177

    CAS  Google Scholar 

  • Oh DH, Leidi E, Zhang Q, Hwang SM, Li Y, Quintero FJ et al (2009) Loss of halophytism by interference with SOS1 expression. Plant Physiol 151:210–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay of lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Oukarroum A, Bussotti F, Goltsev V, Kalaji MH (2015) Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress. Environ Exp Bot 109:80–88

    Article  CAS  Google Scholar 

  • Panuccio MR, Jacobsen SE, Akhtar SS, Muscolo A (2014) Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants 6:plu047. https://doi.org/10.1093/aobpla/plu047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Labrada F, López-Vargas ER, Ortega-Ortiz H, Cadenas-Pliego G, Benavides-Mendoza A, Juárez-Maldonado A (2019) Responses of tomato plants under saline stress to foliar application of copper nanoparticles. Plants 8:151. https://doi.org/10.3390/plants8060151

    Article  CAS  PubMed Central  Google Scholar 

  • Pokorny J, Yanishieva N, Gordon MH (2001) Antioxidants. In: Food: Practical applications. Woodhead Publishing Limited, Cambridge, pp 16–18

    Chapter  Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:439–463

    Article  CAS  Google Scholar 

  • Romero-Aranda R, Soria T, Cuartero J (2001) Tomato plant water uptake and plant-water relationships under saline growth conditions. Plant Sci 160:65–72

    Article  Google Scholar 

  • Ryu H, Cho YG (2015) Plant hormones in salt stress tolerance. J Plant Biol 58:147–155

    Article  CAS  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Shaki F, Maboud H, Ebrahimzadeh NV (2019) Effects of salicylic acid on hormonal cross talk, fatty acids profile, and ions homeostasis from salt-stressed safflower. J Plant Interact 14:340–346. https://doi.org/10.1080/17429145.2019.1635660

    Article  CAS  Google Scholar 

  • Shakirova FM, Sakhabutdinova AR, Bezrukova MV, Fatkhutdinova RA, Fatkhutdinova DR (2003) Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci 164:317–322

    Article  CAS  Google Scholar 

  • Shams M, Ekinci M, Ors S, Turan M, Agar G, Kul R, Yildirim E (2019) Nitric oxide mitigates salt stress effects of pepper seedlings by altering nutrient uptake, enzyme activity and osmolyte accumulation. Physiol Mol Biol Plants 25:1149–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24:2452. https://doi.org/10.3390/molecules24132452

    Article  CAS  PubMed Central  Google Scholar 

  • Sharma A, Sidhu G, Araniti F, Bali AS, Shahzad B, Tripathi DK, Brestic M, Skalicky M, Landi M (2020) The role of salicylic acid in plants exposed to heavy metals. Molecules 25:540. https://doi.org/10.3390/molecules25030540

    Article  CAS  PubMed Central  Google Scholar 

  • Shi Q, Bao Z, Zhu Z, Ying Q, Qian Q (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Grow Regul 48:127–135

    Article  CAS  Google Scholar 

  • Song SY, Chen Y, Chen J, Dai XY, Zhang WH (2011) Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 234:331–345. https://doi.org/10.1007/s00425-011-1403-2

    Article  CAS  PubMed  Google Scholar 

  • Stepien P, Klobus G (2006) Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biol Planta 50:610–616

    Article  CAS  Google Scholar 

  • Stevens J, Senaratna T, Sivasithamparam K (2006) Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane stabilisation. Plant Growth Regul 49:77–83

    CAS  Google Scholar 

  • Su F, Jacquard C, Villaume S, Michel J, Rabenoelina F, Clement C, Barka EA, Dhondt-Cordelier S, Vaillant-Gaveau N (2016) Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana. Front Plant Sci 6:810

    Google Scholar 

  • Sui N, Yang Z, Liu M, Wang B (2015) Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves. BMC Genomics 16:534. https://doi.org/10.3389/fpls.2018.00007

    Article  PubMed  PubMed Central  Google Scholar 

  • Szalai G, Páldi E, Janda T (2005) Effect of salt stress on the endogenous salicylic acid content in maize (Zea mays L.) plants. Acta Biol Szeged 49:47–48

    Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323

    Article  CAS  PubMed  Google Scholar 

  • Upchurch RG (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30:967–977

    Article  CAS  PubMed  Google Scholar 

  • Valifard M, Mohsenzadeh S, Kholdebarin B, Rowshan V (2014) Effects of salt stress on volatile compounds, total phenolic content and antioxidant activities of Salvia mirzayanii. S Afr J Bot 93:92–97

    Article  CAS  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Article  Google Scholar 

  • West G, Inzé D, Beemster GTS (2004) Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiol 135:1050–1058. https://doi.org/10.1104/pp.104.040022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whistler RL, Wolform ML, BeMiller JN (1962) Anthrone colorimetric method. In: Methods in carbohydrate chemistry 1. Academic Press, London, p 384

  • Wiciarz M, Niewiadomska E, Kruk J (2017) Effects of salt stress on low molecular antioxidants and redox state of plastoquinone and P700 in Arabidopsis thaliana (glycophyte) and Eutrema salsugineum (halophyte). Photosynthetica 56:1–9. https://doi.org/10.1007/s11099-017-0733-0

    Article  CAS  Google Scholar 

  • Yang L, Li B, Zheng X, Li J, Yang M, Dong X, He G, An C, Deng XW (2015) Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids. Nat Commun 6:7309

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F et al (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol 188:762–773. https://doi.org/10.1111/j.1469-8137.2010.03422.x

    Article  CAS  PubMed  Google Scholar 

  • Yücel NC, Heybet EH (2016) Salicylic acid and calcium treatments improves wheat vigor, lipids and phenolics under high salinity. Acta Chim Slov 63:738–746. https://doi.org/10.17344/acsi.2016.2449

    Article  CAS  Google Scholar 

  • Zahra S, Amin B, Ali VSM, Ali Y, Mehdi Y (2010) The salicylic acid effect on the tomato (Lycopersicum esculentum Mill.) sugar, protein and proline contents under salinity stress (NaCl). J Biophys Struct Biol 2:35–41

    Google Scholar 

  • Zhang YM, Zhang HM, Liu ZH, Li HC, Guo XL, Li GL (2015) The wheat NHX antiporter gene TaNHX2 confers salt tolerance in transgenic alfalfa by increasing the retention capacity of intracellular potassium. Plant Mol Biol 87:317–327

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Tang N, Huang L, Zhao Y, Tang X, Wang K (2018) Effects of salt stress on plant growth, antioxidant capacity, glandular trichome density, and volatile exudates of Schizonepeta tenuifolia Briq. Int J Mol Sci 19:252. https://doi.org/10.3390/ijms19010252

    Article  CAS  PubMed Central  Google Scholar 

  • Zou YN, Wu QS, Huang YM, Ni QD, He XH (2013) Mycorrhizal mediated lower proline accumulation in Poncirus trifoliata under water deficit derives from the integration of inhibition of proline synthesis with increase of proline degradation. PLoS ONE 8:e80568. https://doi.org/10.1371/journal.pone.0080568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the Researchers Supporting Project (RSP-2020/194), King Saud University, Riyadh, Saudi Arabia. The authors are grateful to the research division of the Integral University, Lucknow, for allotting manuscript number (MCN : IU/R&D/2020-MCN000947).

Author information

Authors and Affiliations

Authors

Contributions

FA, AK, AS, and FA are involved in methodology, data curation, formal analysis, and investigation. AK, FA, MHS and SA contributed to conceptualization, validation, and formal analysis, and wrote and edited original draft and review.

Corresponding authors

Correspondence to Aisha Kamal or Manzer H. Siddiqui.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, F., Kamal, A., Singh, A. et al. Salicylic Acid Modulates Antioxidant System, Defense Metabolites, and Expression of Salt Transporter Genes in Pisum sativum Under Salinity Stress. J Plant Growth Regul 41, 1905–1918 (2022). https://doi.org/10.1007/s00344-020-10271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-020-10271-5

Navigation