Skip to main content
Log in

On Vector Fields Describing the 2d Motion of a Rigid Body in a Viscous Fluid and Applications

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We present some properties of functions in suitable Sobolev spaces which arise naturally in the study of the motion of a rigid body in compressible and incompressible fluid. We relax the regularity assumption of the rigid body by allowing its boundary to be Lipschitz. In the case of a smooth rigid body we obtain a new estimate on the angular velocity. Our results extend and complement related results by V. Starovoitov and moreover we show that they are optimal. As an application we present an example where the rigid body collides with the boundary with non zero speed. Finally, we present a new non collision result concerning a smooth rotating body approaching the boundary, without assuming any special geometry on either the body or the container.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarado, R., Brigham, D., Mazya, V., Mitrea, M., Ziade, E., On the regularity of domains satisfying a uniform hour-glass condition and a sharp version of the Hopf-Oleinik boundary point principle. Probl. Mat. Anal. 57, 3–68 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Adams, R.A.: Sobolev spaces. Academic Press (1975)

    MATH  Google Scholar 

  3. Balinsky, A.A., Evans, W.D., Lewis, R.T.: The analysis and geometry of Hardy’s inequality. Universitext, Springer, xv, 263 pp. (2015)

  4. Boilevin-Kayl L., Fernández M. A., Gerbeau J. F., A loosely coupled scheme for fictitious domain approximations of fluid-structure interaction problems with immersed thin-walled structures SIAM Journal on Scientific Computing, 41(2), 351–374 (2019)

    Article  MathSciNet  Google Scholar 

  5. Feireisl, E., Hillairet, M., Necasova, S., On the motion of several rigid bodies in an incompressible non-Newtonian fluid, Nonlinearity, 21, 1349–1366, (2008)

    Article  ADS  MathSciNet  Google Scholar 

  6. Gérard-Varet D., Hillairet, M., Regularity issues in the problem of fluid structure interaction, Arch. Rational Mech. Anal., 195, 475–407, (2010)

    Article  MathSciNet  Google Scholar 

  7. Hillairet, M., Lack of collision between solid bodies in a 2D incompressible viscous flow, Commun. Partial Differ. Equations, 32(9), 1345–1371 (2007)

    Article  MathSciNet  Google Scholar 

  8. Hoffman K.–H., Starovoitov V. N., On a motion of a solid body in a viscous fluid. Two dimensional case, Adv. Math. Sci. Appl., 9(2), 633–648, (1999)

    MathSciNet  MATH  Google Scholar 

  9. Lacave, Ch., Takahashi, T., Small Moving Rigid Body into a Viscous Incompressible Fluid, Arch. Rational Mech. Anal., 223, 1307–1335, (2017)

    Article  MathSciNet  Google Scholar 

  10. Starovoitov, V.N.: Nonregular problems of hydrodynamics. Novosibirsk State University 2000, Doctor of Sciences, Thesis 230 pp. (in Russian)

  11. Starovoitov V. N., Behavior of Rigid Body in an Incompressible Viscous Fluid near a Boundary, Int. Series of Numerical Math., 147, 313–327. (2003)

    MathSciNet  MATH  Google Scholar 

  12. San Martin J.A., Starovoitov V. N., Tucsnak M., Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Rational Mech. Anal., 161, 113–147, (2002)

    Article  MathSciNet  Google Scholar 

  13. Takahashi T., Existence of strong solutions for the problem of a rigid-fluid system, C. R. Math. Acad. Sci. Paris 336(5), 453–458 (2003)

    Article  MathSciNet  Google Scholar 

  14. Temam, R.: Problème mathématiques en plasticitè, Mèthodes Mathématiques de l’Informatique, 12. Publié avec le concours du C.N.R.S. Paris: Gauthier-Villars. Bordas. VII (1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alkis Tersenov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by D. Gerard-Varet

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We recall that

$$\begin{aligned} \beta = \frac{1+ 2 \alpha }{p(1+ \alpha )} \left( p - \frac{2+ \alpha }{1+ 2 \alpha } \right) . \end{aligned}$$

We then have

Lemma 7.1

Let \(p \ge 1\) and \(0 \le \alpha \le 1\). Then, for \(\varvec{u}\) as defined in (5.2) there holds

$$\begin{aligned} \int _{ I \! \! R_{+}^2} |\varvec{u}|^p dx_1 dx_2 \le \left\{ \begin{array}{ll} C |\dot{h}|^p , &{} \quad \alpha p < 2+\alpha \ , \\ C |\dot{h}|^{p} \, |\ln h|, &{}\quad \alpha p = 2+\alpha , \\ C |\dot{h}|^p h^{ \frac{ 2+\alpha - \alpha p}{1+ \alpha }} , ~~~~ &{}\quad \alpha p > 2+\alpha , \\ \end{array} \right. \end{aligned}$$
(7.1)
$$\begin{aligned} \int _{ I \! \! R_{+}^2} |\nabla \varvec{u}|^p dx_1 dx_2 \le \left\{ \begin{array}{ll} C |\dot{h}|^{p} , ~~~~ &{}\quad p <\frac{2+\alpha }{1+ 2\alpha }, \\ C |\dot{h}|^{\frac{2+\alpha }{1+ 2\alpha }} \, |\ln h|, &{}\quad p = \frac{2+\alpha }{1+ 2\alpha } ,\ \\ C |\dot{h}|^{p} h^{-\beta p }, &{} \quad p>\frac{2+\alpha }{1+ 2\alpha } \ .\\ \end{array} \right. \end{aligned}$$
(7.2)

In addition, the following local estimates hold true for \( p \ge 1\)

$$\begin{aligned} \int _{\mathcal {G}_{h, \sigma _0}} |\nabla {{\varvec{u}}} |^{p} dx_1 dx_2\le&{} C |\dot{h}|^{p} h^{-\beta p }, ~~~~0<\alpha \le 1, \end{aligned}$$
(7.3)
$$\begin{aligned} \int _{\Pi _{h}} |\nabla {{\varvec{u}}} |^{p} dx_1 dx_2\le&{} C |\dot{h}|^{p} h^{2- p },~~~~\alpha =0, \end{aligned}$$
(7.4)

where \(\mathcal {G}_{h, \sigma _0}\) is defined in (4.12) and \(\Pi _{h}\) in the proof of Theorem 4.3.

Proof

For

$$\begin{aligned} \phi =\phi \left( \frac{x_2}{k x_1^{1+\alpha }+ h(t)}\right) , \end{aligned}$$

we have that

$$\begin{aligned} \nabla \varvec{u}= & {} \Phi \nabla \nabla ^{\perp } \phi + \nabla \Phi \nabla ^{\perp } \phi + \nabla \phi \nabla ^{\perp } \Phi \ + \cdots \nonumber \\=: & {} I_1 + I_2 + I_3 + \cdots \end{aligned}$$
(7.5)

A straightforward calculation shows that for \(i,j=1,2\)

$$\begin{aligned} \frac{\partial \phi }{\partial x_i}= & {} 0, ~~~~~~~~~~~~~~~~ x_2 \ge k x_1^{1+\alpha }+ h , \\ \Big | \frac{\partial \phi }{\partial x_i} \Big |\le & {} \frac{C}{k x_1^{1+\alpha } +h}, ~~~~~~0 \le x_2 \le k x_1^{1+\alpha }+ h , \\ \Big | \frac{\partial ^2 \phi }{\partial x_ix_j} \Big |\le & {} \frac{C(1+ \alpha h x_1^{\alpha -1})}{(k x_1^{1+\alpha } + h)^2} ,~~~~0 \le x_2 \le k x_1^{1+\alpha }+ h. \end{aligned}$$

We then compute, for \(\gamma >0\) small enough but fixed

$$\begin{aligned} I_1= & {} \int _{ I \! \! R_{+}^2} |\Phi |^p | \nabla \nabla ^{\perp } \phi |^p dx_1 dx_2 \\\le & {} 2 \int _{0}^{\gamma } \int _{0}^{k x_1^{1+\alpha } +h} |\Phi |^p | \nabla \nabla ^{\perp } \phi |^p dx_2 dx_1 + 2 \int _{\gamma }^{2 \rho } \int _{0}^{k x_1^{1+\alpha } +h} |\Phi |^p | \nabla \nabla ^{\perp } \phi |^p dx_2 dx_1 \\\le & {} C |\dot{h}|^p \left( \int _{0}^{\gamma } \int _{0}^{k x_1^{1+\alpha } +h} \frac{x_1^p \, dx_2 dx_1}{(k x_1^{1+\alpha } + h)^{2p} } + \int _{0}^{\gamma } \int _{0}^{k x_1^{1+\alpha } +h} \frac{ \alpha ^p x_1^{\alpha p} \, dx_2 dx_1}{(k x_1^{1+\alpha } + h)^{p} } + O_h(1) \right) \\\le & {} C |\dot{h}|^p \left( \int _{0}^{\gamma } \frac{x_1^p \, dx_1}{(k x_1^{1+\alpha } + h)^{2p-1} } + \alpha ^p \int _{0}^{\gamma } \frac{ x_1^{\alpha p} \, dx_1}{(k x_1^{1+\alpha } + h)^{p-1} } + O_h(1) \right) \end{aligned}$$

To estimate the integrals above we use the fact that for \(0 \le \alpha \le 1\) and \(b, q \in I \! \! R\) we have

$$\begin{aligned} \int _{0}^{\gamma } \frac{x_1^b \, dx_1}{(k x_1^{1+\alpha } + h)^{q} } = \frac{ h^{\frac{b-\alpha }{1+\alpha }-q+1}}{1+\alpha } \int ^{\frac{\gamma ^{1+\alpha }}{h}}_0 \frac{z^{\frac{b-\alpha }{1+\alpha }} \, dz}{(kz+1)^{q}}, ~~~~~\left( z= \frac{x^{1+\alpha }}{h} \right) . \end{aligned}$$

We then get after elementary manipulations

$$\begin{aligned} I_1 \le \left\{ \begin{array}{ll} C |\dot{h}|^p , ~~~~ &{}\quad p <\frac{2+\alpha }{1+ 2\alpha }, \\ C |\dot{h}|^{\frac{2+\alpha }{1+ 2\alpha }} \, |\ln h|, &{} \quad p = \frac{2+\alpha }{1+ 2\alpha } ,\ \\ C |\dot{h}|^p |h|^{-\frac{1+ 2\alpha }{1+ \alpha } \left( p- \frac{2+\alpha }{1+ 2\alpha }\right) }, &{}\quad p>\frac{2+\alpha }{1+ 2\alpha } \ .\\ \end{array} \right. \end{aligned}$$

We similarly calculate for \(i=2,3\)

$$\begin{aligned} I_i \le \left\{ \begin{array}{ll} C |\dot{h}|^p , ~~~~ &{}\quad p <\frac{2+\alpha }{1+ \alpha }, \\ C |\dot{h}|^{\frac{2+\alpha }{1+ \alpha }} \, |\ln h|, &{}\quad p = \frac{2+\alpha }{1+ \alpha } ,\ \\ C |\dot{h}|^p |h|^{- \left( p- \frac{2+\alpha }{1+ \alpha }\right) }, &{}\quad p>\frac{2+\alpha }{1+ \alpha } \ .\\ \end{array} \right. \end{aligned}$$

Combining the estimates of \(I_i\), \(i=1,2,3\) and noticing that the omitted terms in (7.5) are not as important we conclude (7.2). Estimate (7.1) is similar and simpler. \(\Box \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippas, S., Tersenov, A. On Vector Fields Describing the 2d Motion of a Rigid Body in a Viscous Fluid and Applications. J. Math. Fluid Mech. 23, 5 (2021). https://doi.org/10.1007/s00021-020-00528-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-020-00528-0

Keywords

Mathematics Subject Classification

Navigation