Skip to main content

Advertisement

Log in

Microporous bayberry-like nano-silica fillers enabling superior performance gel polymer electrolyte for lithium metal batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Unlike conventional organic liquid electrolytes, which have uncontrollable lithium dendrite growth and serious safety concerns, gel polymer electrolytes (GPEs) are widely considered to be one of the best candidates for the next generation of high energy density lithium metal batteries (LMBs). However, the challenge of maintaining high mechanical strength and good electrochemical stability simultaneously has not yet been met by these materials. Therefore, in this paper, we designed bayberry silica nanoparticles (BSNPs) with ultra-high specific surface area and compounded them with polyvinylidene fluoride – hexafluoropropylene (PVDF-HFP) (BSNPs-CPE) to effectively solve these problems. The results show that compared with the blank sample and industrial silica nanoparticles (SNPs-CPE) composite electrolyte, BSNPs-CPE not only has higher absorption rate and ion conductivity but also has a higher lithium-ion migration. In addition, due to the good compatibility between BSNPs-CPE and lithium metal, a stable SEI layer can be generated. At the same time, lithium metal batteries of BSNPs-CPE exhibit good cycling performance and rate capacity. After 300 cycles, the excellent capacity of up to 147.2 mAh g− 1 remains at the current rate of 1.0 C. More encouragingly, the capacity of 119 mAh g− 1 was obtained at the current rate of 10 C, which keeps much higher than that of the blank sample (76.2 mAh g− 1). This kind of nanostructure with micropore and high specific surface area provides important significance for the design of high-performance lithium metal battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Quartarone, P. Mustarelli, Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 40(5), 2525–2540 (2011)

    Article  CAS  Google Scholar 

  2. M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652 (2008)

    Article  CAS  Google Scholar 

  3. B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011)

    Article  CAS  Google Scholar 

  4. D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2015)

    Article  CAS  Google Scholar 

  5. A. Arya, A.L. Sharma, Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23(3), 497–540 (2017)

    Article  CAS  Google Scholar 

  6. Q. Wang, W.-L. Song, L.-Z. Fan, Q. Shi, Effect of alumina on triethylene glycol diacetate-2-propenoic acid butyl ester composite polymer electrolytes for flexible lithium ion batteries. J Power Sources 279, 405–412 (2015)

    Article  CAS  Google Scholar 

  7. W. Li, Y. Pang, J. Liu, G. Liu, Y. Wang, Y. Xia, A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Adv. 7(38), 23494–23501 (2017)

    Article  CAS  Google Scholar 

  8. G. Chen, F. Zhang, Z. Zhou, J. Li, Y. Tang, A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv. Energy Mater. 8, 25 (2018)

    Google Scholar 

  9. B. Boateng, G. Zhu, W. Lv, D. Chen, C. Feng, M. Waqas, S. Ali, K. Wen, W. He, An efficient, scalable route to robust PVDF-co-HFP/SiO2 separator for long-cycle lithium ion batteries. Physica Status Solidi 12(10), 1800319 (2018)

    Article  CAS  Google Scholar 

  10. H. Gao, L. Xue, S. Xin, J.B. Goodenough, A high-energy-density potassium battery with a polymer-gel electrolyte and a polyaniline cathode. Angew. Chem. Int. Ed. 57(19), 5449–5453 (2018)

    Article  CAS  Google Scholar 

  11. D. Lin, W. Liu, Y. Liu, H.R. Lee, P.-C. Hsu, K. Liu, Y. Cui, High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 16(1), 459–465 (2016)

    Article  CAS  Google Scholar 

  12. Y. Shi, L. Peng, G. Yu, Nanostructured conducting polymer hydrogels for energy storage applications. Nanoscale 7(30), 12796–12806 (2015)

    Article  CAS  Google Scholar 

  13. C.H. Tsao, Y.H. Hsiao, C.H. Hsu, P.L. Kuo, Stable lithium deposition generated from ceramic-cross-linked gel polymer electrolytes for lithium anode. ACS Appl. Mater. Interfaces 8(24), 15216–15224 (2016)

    Article  CAS  Google Scholar 

  14. Q. Lu, Y.-B. He, Q. Yu, B. Li, Y.V. Kaneti, Y. Yao, F. Kang, Q.-H. Yang, Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv. Mater. 29, 13 (2017)

    Google Scholar 

  15. W.-S. Young, T.H. Epps, Ionic conductivities of block copolymer electrolytes with various conducting pathways: sample preparation and processing considerations. Macromolecules 45(11), 4689–4697 (2012)

    Article  CAS  Google Scholar 

  16. H. Zhang, C. Li, M. Piszcz, E. Coya, T. Rojo, L.M. Rodriguez-Martinez, M. Armand, Z. Zhou, Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem. Soc. Rev. 46(3), 797–815 (2017)

    Article  CAS  Google Scholar 

  17. Q. Ma, H. Zhang, C. Zhou, L. Zheng, P. Cheng, J. Nie, W. Feng, Y.-S. Hu, H. Li, X. Huang, L. Chen, M. Armand, Z. Zhou, Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew. Chem. Int. Ed. 55(7), 2521–2525 (2016)

    Article  CAS  Google Scholar 

  18. J.E. Weston, B.C.H. Steele, Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ionics 7(1), 75–79 (1982)

    Article  CAS  Google Scholar 

  19. K. Prasanna, T. Subburaj, W.J. Lee, C.W. Lee, Polyethylene separator: stretched and coated with porous nickel oxide nanoparticles for enhancement of its efficiency in Li-ion batteries. Electrochim. Acta 137, 273–279 (2014)

    Article  CAS  Google Scholar 

  20. H.T.T. Le, D.T. Ngo, R.S. Kalubarme, G. Cao, C.-N. Park, C.-J. Park, Composite gel polymer electrolyte based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) with modified aluminum-doped lithium lanthanum titanate (A-LLTO) for high-performance lithium rechargeable batteries. ACS Appl. Mater. Interfaces 8(32), 20710–20719 (2016)

    Article  CAS  Google Scholar 

  21. C.M. Costa, M. Kundu, V.F. Cardoso, A.V. Machado, M.M. Silva, S. Lanceros-Mendez, Silica/poly(vinylidene fluoride) porous composite membranes for lithium-ion battery separators. J. Membr. Sci. 564, 842–851 (2018)

    Article  CAS  Google Scholar 

  22. W. Chen, Y. Liu, Y. Ma, W. Yang, Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate). J. Power Sources 273, 1127–1135 (2015)

    Article  CAS  Google Scholar 

  23. D.-W. Lee, S.-H. Lee, Y.-N. Kim, J.-M. Oh, Preparation of a high-purity ultrafine α-Al2O3 powder and characterization of an Al2O3-coated PE separator for lithium-ion batteries. Powder Technol. 320, 125–132 (2017)

    Article  CAS  Google Scholar 

  24. J. Nunes-Pereira, C.M. Costa, S. Lanceros-Méndez, Polymer composites and blends for battery separators: state of the art, challenges and future trends. J. Power Sources 281, 378–398 (2015)

    Article  CAS  Google Scholar 

  25. X. Shi, N. Ma, Y. Wu, Y. Lu, Q. Xiao, Z. Li, G. Lei, Fabrication and electrochemical properties of LATP/PVDF composite electrolytes for rechargeable lithium-ion battery. Solid State Ionics 325, 112–119 (2018)

    Article  CAS  Google Scholar 

  26. H. Hou, L. Zhang, T. Liu, J. Cheng, L. Sun, C. Wang, M. Jin, Z. Song, J. Cheng, Q. Wang, H. Sun, X. Chen, G. Cui, A facile approach to preparation of silica double-shell hollow particles, and their application in gel composite electrolytes. J. Colloid Interface Sci. 529, 130–138 (2018)

    Article  CAS  Google Scholar 

  27. D. Zhou, R. Liu, Y.-B. He, F. Li, M. Liu, B. Li, Q.-H. Yang, Q. Cai, F. Kang, SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life. Adv. Energy Mater. 6(7), 1502214 (2016)

  28. D. Xu, J. Su, J. Jin, C. Sun, Y. Ruan, C. Chen, Z. Wen, In Situ Generated Fireproof Gel Polymer Electrolyte with Li6.4Ga0.2La3Zr2O12 As Initiator and Ion-Conductive Filler. Advanced Energy Materials 9(25), 1900611 (2019)

    Article  CAS  Google Scholar 

  29. J. Zhang, Z. Guo, X. Zhi, H. Tang, Surface modification of ultrafine precipitated silica with 3-methacryloxypropyltrimethoxysilane in carbonization process. Colloids Surf., A 418, 174–179 (2013)

    Article  CAS  Google Scholar 

  30. W. Li, S. Zhang, B. Wang, S. Gu, D. Xu, J. Wang, C. Chen, Z. Wen, Nanoporous adsorption effect on alteration of the Li+ diffusion pathway by a highly ordered porous electrolyte additive for high-rate all-solid-state lithium metal batteries. ACS Appl. Mater Interfaces 10(28), 23874–23882 (2018)

    Article  CAS  Google Scholar 

  31. Y. Zhang, X. Wang, W. Feng, Y. Zhen, P. Zhao, Z. Cai, L. Li, Effects of the shapes of BaTiO3 nanofillers on PEO-based electrolytes for all-solid-state lithium-ion batteries. Ionics 25(4), 1471–1480 (2019)

    Article  CAS  Google Scholar 

  32. M. Moskwiak, I. Giska, R. Borkowska, A. Zalewska, M. Marczewski, H. Marczewska, W. Wieczorek, Physico- and electrochemistry of composite electrolytes based on PEODME–LiTFSI with TiO2. J. Power Sources 159(1), 443–448 (2006)

    Article  CAS  Google Scholar 

  33. F. Croce, G.B. Appetecchi, L. Persi, B. Scrosati, Nanocomposite polymer electrolytes for lithium batteries. Nature 394(6692), 456–458 (1998)

    Article  CAS  Google Scholar 

  34. W. Wieczorek, Z. Florjanczyk, J.R. Stevens, Composite polyether based solid electrolytes. Electrochim. Acta 40(13), 2251–2258 (1995)

    Article  CAS  Google Scholar 

  35. C.-Y. Chiang, M. Jaipal Reddy, P.P. Chu, Nano-tube TiO2 composite PVdF/LiPF6 solid membranes. Solid State Ionics 175(1), 631–635 (2004)

    Article  CAS  Google Scholar 

  36. P.P. Chu, M.J. Reddy, H.M. Kao, Novel composite polymer electrolyte comprising mesoporous structured SiO2 and PEO/Li. Solid State Ionics 156(1), 141–153 (2003)

    Article  CAS  Google Scholar 

  37. Y.J. Wong, L. Zhu, W.S. Teo, Y.W. Tan, Y. Yang, C. Wang, H. Chen, Revisiting the Stöber method: inhomogeneity in silica shells. J. Am. Chem. Soc. 133(30), 11422–11425 (2011)

    Article  CAS  Google Scholar 

  38. J. Liu, S.Z. Qiao, H. Liu, J. Chen, A. Orpe, D. Zhao, G.Q. Lu, Extension of The Stöber method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres. Angew. Chem. Int. Ed. 50(26), 5947–5951 (2011)

    Article  CAS  Google Scholar 

  39. Y. Kobayashi, H. Katakami, E. Mine, D. Nagao, M. Konno, L.M. Liz-Marzán, Silica coating of silver nanoparticles using a modified Stöber method. J. Colloid Interface Sci. 283(2), 392–396 (2005)

    Article  CAS  Google Scholar 

  40. K. Zhang, L.-L. Xu, J.-G. Jiang, N. Calin, K.-F. Lam, S.-J. Zhang, H.-H. Wu, G.-D. Wu, B. Albela, L. Bonneviot, P. Wu, Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore structure. J. Am. Chem. Soc. 135(7), 2427–2430 (2013)

    Article  CAS  Google Scholar 

  41. S. Zugmann, M. Fleischmann, M. Amereller, R.M. Gschwind, H.D. Wiemhoefer, H.J. Gores, Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochim. Acta 56(11), 3926–3933 (2011)

    Article  CAS  Google Scholar 

  42. M. Forsyth, D.R. MacFarlane, A. Best, J. Adebahr, P. Jacobsson, A.J. Hill, The effect of nano-particle TiO2 fillers on structure and transport in polymer electrolytes. Solid State Ionics 147(3), 203–211 (2002)

    Article  CAS  Google Scholar 

  43. J. Bae, Y. Li, J. Zhang, X. Zhou, F. Zhao, Y. Shi, J.B. Goodenough, G. Yu, A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed. 57(8), 2096–2100 (2018)

    Article  CAS  Google Scholar 

  44. J. Zheng, J. Lu, K. Amine, F. Pan, Depolarization effect to enhance the performance of lithium ions batteries. Nano Energy 33, 497–507 (2017)

    Article  CAS  Google Scholar 

  45. S. Choudhury, A Highly Reversible Room-Temperature Lithium Metal Battery Based on Cross-Linked Hairy Nanoparticles, in Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries. ed. by S. Choudhury (Springer, Cham, 2019), pp. 35–57

    Chapter  Google Scholar 

  46. L. Sannier, R. Bouchet, M. Rosso, J.M. Tarascon, Evaluation of GPE performances in lithium metal battery technology by means of simple polarization tests. J. Power Sources 158(1), 564–570 (2006)

    Article  CAS  Google Scholar 

  47. C. Yan, R. Xu, J.-L. Qin, H. Yuan, Y. Xiao, L. Xu, J.-Q. Huang, Inside cover: 4.5 V high-voltage rechargeable batteries enabled by the reduction of polarization on the lithium metal anode (Angew. Chem. Int. Ed. 43/2019). Angew. Chem. Int. Ed. 58(43),15164–15164 (2019)

  48. T. Li, C. Wang, J. Cheng, J. Guo, A. Xiao, H. Hou, Q. Wang, B. Wang, X. Chen, G. Cui, Janus polymer composite electrolytes improve the cycling performance of lithium–oxygen battery. ACS Appl. Mater Interfaces (2020)

  49. K. Liu, D. Zhuo, H.W. Lee, W. Liu, D.C. Lin, Y.Y. Lu, Y. Cui, Extending the life of lithium-based rechargeable batteries by reaction of lithium dendrites with a novel silica nanoparticle sandwiched separator. Adv. Mater. 29(4), 6 (2017)

    Article  CAS  Google Scholar 

  50. W. Liu, S.W. Lee, D.C. Lin, F.F. Shi, S. Wang, A.D. Sendek, Y. Cui, Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat Energy 2(5), 7 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from “135” Projects Fund of CAS QIBEBT Director Innovation Foundation, the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010105), Natural Science Foundation of Shandong Province (No. ZR2014BQ004 and No. ZR2018BEM037), Project funded by China Postdoctoral Science Foundation (2018M642718), Qingdao postdoctoral applied research project and The CAS Hundred Talents Program (Y5100719AL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinggang Wang, Hongguang Sun or Xiao Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 2392 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Hou, H., Cheng, J. et al. Microporous bayberry-like nano-silica fillers enabling superior performance gel polymer electrolyte for lithium metal batteries. J Mater Sci: Mater Electron 32, 81–93 (2021). https://doi.org/10.1007/s10854-020-04645-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04645-4

Navigation