Skip to main content
Log in

Investigation on dielectric properties of iron oxide nanoparticles-embedded binary transition metals-doped polyaniline-metal hybrid nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dielectric material based on hybrid PANI-metal nanocomposites always gained an immense research interest due to its unique properties. Herein, we have synthesized iron oxide nanoparticles embedded two different binary transition metal doped PANI nanocomposites via simple in situ rapid mixing chemical oxidative polymerization method. Morphological, structural, electronic and chemical composition of the composites were systematically studied. The influence of dopant concentration in tuning PANI surface from flake like to spherical bead like morphology was analysed by high resolution transmission electron microscopy. Moreover, dielectric parameters as function of frequency have been investigated at room temperature in a frequency range 100Hz–2MHz and the result showed that the as prepared flake like nanocomposites - 0.3 M Cu-Fe-PANI and 0.7 M Mn-Fe-PANI systems are promising dielectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Xu, Y. Ding, Y. Yu, S. Jiang, L. Chen, H. Hou, Highly foldable PANi@CNTs/PU dielectric composites toward thin-film capacitor application. Mater. Lett. 192, 25–28 (2017). https://doi.org/10.1016/j.matlet.2017.01.064

    Article  CAS  Google Scholar 

  2. T. Chen, B. Liu, Dielectric properties of graphene quantum dot-cobalt ferrite-poly(vinylidene fluoride) ternary composites. Mater. Lett. (2017). https://doi.org/10.1016/j.matlet.2017.07.088

    Article  Google Scholar 

  3. C. Anju, S. Palatty, Enhanced dielectric performance of polyaniline-binary transition metal composites. J. Electron. Mater. 48, 6710–6715 (2019)

    Article  CAS  Google Scholar 

  4. S. Yu, F. Qin, G. Wang, Improving the dielectric properties of poly(vinylidene fluoride) composites by using poly(vinyl pyrrolidone)-encapsulated polyaniline nanorods. J. Mater. Chem. C. 4, 1504–1510 (2016). https://doi.org/10.1039/C5TC04026D

    Article  CAS  Google Scholar 

  5. J. Zhu, S. Wei, L. Zhang, Y. Mao, J. Ryu, N. Haldolaarachchige, D.P. Young, Z. Guo, Electrical and dielectric properties of polyaniline–Al2O3 nanocomposites derived from various Al2O3 nanostructures. J. Mater. Chem. 21, 3952 (2011). https://doi.org/10.1039/c0jm03908j

    Article  CAS  Google Scholar 

  6. S. Cho, K. Shin, J. Jang, Enhanced electrochemical performance of highly porous supercapacitor electrodes based on solution processed polyaniline thin films. Appl. Mater. Interfaces 5, 9186–9193 (2013)

    Article  CAS  Google Scholar 

  7. L.M. Santino, Y. Lu, S. Acharya, L. Bloom, D. Cotton, A. Wayne, J.M.D. Arcy, Enhancing cycling stability of aqueous polyaniline electrochemical capacitors. Appl. Mater. Interfaces (2016). https://doi.org/10.1021/acsami.6b09779

    Article  Google Scholar 

  8. J. Kim, A.K. Sharma, Y. Lee, Synthesis of polypyrrole and carbon nano-fiber composite for the electrode of electrochemical capacitors. Mater Lett 60, 1697–1701 (2006). https://doi.org/10.1016/j.matlet.2005.12.002

    Article  CAS  Google Scholar 

  9. T. Chen, B. Liu, Enhanced dielectric properties of poly ( vinylidene fluoride ) composite filled with polyaniline-iron core-shell nanocomposites. Mater. Lett. 210, 165–168 (2018). https://doi.org/10.1016/j.matlet.2017.09.007

    Article  CAS  Google Scholar 

  10. T. Prasankumar, S. Karazhanov, S.P. Jose, Three-dimensional architecture of tin dioxide doped polypyrrole/reduced graphene oxide as potential electrode for flexible supercapacitors. Mater. Lett. (2018). https://doi.org/10.1016/j.matlet.2018.03.093

    Article  Google Scholar 

  11. H. Xu, J. Wu, C. Li, J. Zhang, J. Liu, Investigation of polyaniline films doped with Fe3+ as the electrode material for electrochemical supercapacitors. Electrochim. Acta. 165, 14–21 (2015). https://doi.org/10.1016/j.electacta.2015.01.224

    Article  CAS  Google Scholar 

  12. A. Chiolerio, S. Bocchini, M. Crepaldi, K. Bejtka, Bridging electrochemical and electron devices: fast resistive switching based on polyaniline from one pot synthesis using FeCl3 as oxidant and co-doping agent. Synth. Met. 229, 72–81 (2017). https://doi.org/10.1016/j.synthmet.2017.05.001

    Article  CAS  Google Scholar 

  13. C. Anju, S. Palatty, Ternary doped polyaniline-metal nanocomposite as high performance supercapacitive material. Electrochimica Acta 299, 626–635 (2019). https://doi.org/10.1016/j.electacta.2019.01.030

    Article  CAS  Google Scholar 

  14. M. Wan, A.K. Srivastava, P.K. Dhawan, R.R. Yadav, S.B. Sant, R. Kripal, J.-H. Lee, High dielectric response of 2D-polyaniline nanoflake based epoxy nanocomposites. RSC Adv. 5, 48421–48425 (2015). https://doi.org/10.1039/C5RA05660H

    Article  CAS  Google Scholar 

  15. K. Pandey, P. Yadav, I. Mukhopadhyay, Elucidating the effect of copper as a redox additive and dopant on the performance of a PANI based supercapacitor. Phys. Chem. Chem. Phys. 17, 878–887 (2015). https://doi.org/10.1039/C4CP04321A

    Article  CAS  Google Scholar 

  16. I. Sapurina, J. Stejskal, The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym Int 57, 1295–1325 (2008)

    Article  CAS  Google Scholar 

  17. I. Pašti, M. Milojević-Rakić, K. Junker, D. Bajuk-Bogdanović, P. Walde, G. Ćirić-Marjanović, Superior capacitive properties of polyaniline produced by a one-pot peroxidase/H2O2-triggered polymerization of aniline in the presence of AOT vesicles. Electrochim. Acta. 258, 834–841 (2017). https://doi.org/10.1016/j.electacta.2017.11.133

    Article  CAS  Google Scholar 

  18. Z.D. Zujovic, Y. Wang, G.A. Bowmaker, R.B. Kaner, Structure of ultralong polyaniline nanofibers using initiators, (2011) 2735–2742

  19. H. Xu, X. Li, G. Wang, Polyaniline nano fi bers with a high speci fi c surface area and an improved pore structure for supercapacitors. J. Power Sour. 294, 16–21 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.053

    Article  CAS  Google Scholar 

  20. Y. Zhao, H. Wei, M. Arowo, X. Yan, W. wu, J. Chen, Y. Wang, Z. Guo, Electrochemical energy storage by polyaniline nanofibers: high gravity assisted oxidative polymerization vs. rapid mixing chemical oxidative polymerization, Phys. Chem. Chem. Phys., (2014)

  21. D. Dastan, S.L. Panahi, N.B. Chaure, Characterization of titania thin films grown by dip-coating technique. J. Mater. Sci. Mater. Electron. 27, 12291–12296 (2016). https://doi.org/10.1007/s10854-016-4985-4

    Article  CAS  Google Scholar 

  22. W. Hu, T. Li, X. Liu, D. Dastan, K. Ji, P. Zhao, 1550 nm pumped upconversion chromaticity modulation in Er3+ doped double perovskite LiYMgWO6 for anti-counterfeiting. J. Alloys Compd. 818, 152933 (2020). https://doi.org/10.1016/j.jallcom.2019.152933

    Article  CAS  Google Scholar 

  23. D.M. Jundale, S.T. Navale, G.D. Khuspe, D.S. Dalavi, P.S. Patil, V.B. Patil, Polyaniline-CuO hybrid nanocomposites: synthesis, structural, morphological, optical and electrical transport studies. J Mater Sci Mater Electron 24, 3526–3535 (2013). https://doi.org/10.1007/s10854-013-1280-5

    Article  CAS  Google Scholar 

  24. N.N. Ali, Y. Atassi, A. Salloum, A. Charba, A. Malki, M. Jafarian, Comparative Study of microwave absorption characteristics of (Polyaniline/NiZn Ferrite) nanocomposites with different ferrite percentages. Mater. Chem. Phys. (2018). https://doi.org/10.1016/j.matchemphys.2018.02.017

    Article  Google Scholar 

  25. M. Jain, S. Annapoorni, Raman study of polyaniline nanofibers prepared by interfacial polymerization. Synth. Met. 160, 1727–1732 (2010). https://doi.org/10.1016/j.synthmet.2010.06.008

    Article  CAS  Google Scholar 

  26. T. Sen, S. Mishra, N.G. Shimpi, A b -cyclodextrin based binary dopant for polyaniline: structural, thermal, electrical, and sensing performance. Mater. Sci. Eng. B. 220, 13–21 (2017). https://doi.org/10.1016/j.mseb.2017.03.003

    Article  CAS  Google Scholar 

  27. R. Ullah, G.A. Bowmaker, J. Travassejdic, K. Ali, A.A. Shah, Synthesis and characterization of polyaniline by using weak oxidizing agent. Macromol symp (2014). https://doi.org/10.1002/masy.201300141

    Article  Google Scholar 

  28. X. Li, C. Zhang, S. Xin, Z. Yang, Y. Li, D. Zhang, P. Yao, Facile Synthesis of MoS2/reduced graphene oxide@polyaniline for high-performance supercapacitors. Appl. Mater. Inter. (2016). https://doi.org/10.1021/acsami.6b06762

    Article  Google Scholar 

  29. P. Anilkumar, M. Jayakannan, New renewable resource amphiphilic molecular design for size-controlled and highly ordered polyaniline nanofibers. Langmuir 22, 5952–5957 (2006). https://doi.org/10.1021/la060173n

    Article  CAS  Google Scholar 

  30. O. Abdulrazzaq, S.E. Bourdo, V. Saini, F. Watanabe, B. Barnes, A. Ghosh, A.S. Biris, Tuning the work function of polyaniline via camphorsulfonic acid: an x-ray photoelectron spectroscopy investigation. RSC Adv. 5(1), 33–40 (2015)

    Article  CAS  Google Scholar 

  31. A. Lassoued, B. Dkhil, A. Gadri, S. Ammar, Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results Phys. 7, 3007–3015 (2017). https://doi.org/10.1016/j.rinp.2017.07.066

    Article  Google Scholar 

  32. S.V. Gopal, R. Mini, V.B. Jothy, I.H. Joe, Synthesis and characterization of iron oxide nanoparticles using DMSO as a stabilizer. Mater Today Proc. 2, 1051–1055 (2015). https://doi.org/10.1016/j.matpr.2015.06.036

    Article  Google Scholar 

  33. W.D. Zhou, D. Dastan, J. Li, X.T. Yin, Q. Wang. (2020). Discriminable sensing response behavior to homogeneous gases based on n-ZNO/p-NIO composites. Nanomaterials. 10: 785. https://doi.org/https://doi.org/10.3390/nano10040785

  34. G.L. Tan, D. Tang, D. Dastan, A. Jafari, J.P.B. Silva, X.T. Yin, Effect of heat treatment on electrical and surface properties of tungsten oxide thin films grown by HFCVD technique, Mater. Sci. Semicond. Process. 122 (2021). https://doi.org/https://doi.org/10.1016/j.mssp.2020.105506.

  35. A. Mostafaei, A. Zolriasatein, Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog Nat Sci Mater Int. 22, 273–280 (2012). https://doi.org/10.1016/j.pnsc.2012.07.002

    Article  Google Scholar 

  36. L. Sun, Z. Shi, H. Wang, K. Zhang, D. Dastan, K. Sun, R. Fan, Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide-BaTiO3/P(VDF-HFP) composites. J. Mater. Chem. A. 8, 5750–5757 (2020). https://doi.org/10.1039/d0ta00903b

    Article  CAS  Google Scholar 

  37. H. Zhang, Z. Jia, A. Feng, Z. Zhou, C. Zhang, K. Wang, N. Liu, G. Wu, Enhanced microwave absorption performance of sulfur-doped hollow carbon microspheres with mesoporous shell as a broadband absorber. Compos. Commun. 19, 42–50 (2020). https://doi.org/10.1016/j.coco.2020.02.010

    Article  CAS  Google Scholar 

  38. X. Zhou, Z. Jia, A. Feng, K. Wang, X. Liu, L. Chen, H. Cao, G. Wu, Dependency of tunable electromagnetic wave absorption performance on morphology-controlled 3D porous carbon fabricated by biomass. Compos. Commun. 21, 100404 (2020). https://doi.org/10.1016/j.coco.2020.100404

    Article  Google Scholar 

  39. L. Sun, Z. Shi, L. Liang, S. Wei, H. Wang, D. Dastan, K. Sun, R. Fan, Layer-structured BaTiO3/P(VDF-HFP) composites with concurrently improved dielectric permittivity and breakdown strength toward capacitive energy-storage applications. J. Mater. Chem. C. 8, 10257–10265 (2020). https://doi.org/10.1039/d0tc01801e

    Article  CAS  Google Scholar 

  40. H. Zhang, Z. Jia, A. Feng, Z. Zhou, L. Chen, C. Zhang, X. Liu, G. Wu, In situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber. Compos. Part B Eng. 199, 108261 (2020). https://doi.org/10.1016/j.compositesb.2020.108261

    Article  CAS  Google Scholar 

  41. K. Sun, J. Dong, Z. Wang, Z. Wang, G. Fan, Q. Hou, L. An, M. Dong, R. Fan, Z. Guo, Q. Hou, L. An, M. Dong, R. Fan, Z. Guo, C: Plasmonics: Optical, magnetic, and hybrid materials tunable negative permittivity in flexible graphene/PDMS metacomposites, (2019). doi:https://doi.org/10.1021/acs.jpcc.9b06753.

  42. J. Zhu, H. Gu, Z. Luo, N. Haldolaarachige, D.P. Young, S. Wei, Z. Guo, Carbon nanostructure-derived polyaniline metacomposites: Electrical, dielectric, and giant magnetoresistive properties. Langmuir. 28, 10246–10255 (2012). https://doi.org/10.1021/la302031f

    Article  CAS  Google Scholar 

  43. X. Zhu, J. Yang, D. Dastan, H. Garmestani, R. Fan, Z. Shi, Fabrication of core-shell structured Ni@BaTiO3 scaffolds for polymer composites with ultrahigh dielectric constant and low loss. Compos. Part A Appl. Sci. Manuf. 125, 105521 (2019). https://doi.org/10.1016/j.compositesa.2019.105521

    Article  CAS  Google Scholar 

  44. M.D.A. Khan, A. Akhtar, S.A. Nabi, Investigation of the electrical conductivity and optical property of polyaniline-based nanocomposite and its application as an ethanol vapor sensor. New J. Chem. 39, 3728–3735 (2015). https://doi.org/10.1039/C4NJ02260B

    Article  CAS  Google Scholar 

  45. S. Cho, J.S. Lee, J. Jang, Poly (vinylidene fl uoride )/NH 2 - Treated Graphene Nanodot/Reduced Graphene Oxide Nanocomposites with Enhanced Dielectric Performance for Ultrahigh Energy Density Capacitor, (2015). doi:https://doi.org/10.1021/acsami.5b01430.

  46. J. Tahalyani, K.K. Rahangdale, R. Aepuru, B. Kandasubramanian, S. Datar, Dielectric investigation of a conducting fibrous nonwoven porous mat fabricated by a one-step facile electrospinning process. RSC Adv. 6, 36588–36598 (2016). https://doi.org/10.1039/C5RA23012H

    Article  CAS  Google Scholar 

  47. B.C. Huang, Q. Zhang, Fully functionalized high-dielectric- constant nanophase polymers with high electromechanical response. Adv. Mater. (2005). https://doi.org/10.1002/adma.200401161

    Article  Google Scholar 

  48. M. Niranjana, L. Yesappa, S.P. Ashokkumar, H. Vijeth, S. Raghu, H. Devendrappa, RSC Adv. 6, 115074–115084 (2016). https://doi.org/10.1039/C6RA24137A

    Article  CAS  Google Scholar 

  49. J. Yang, X. Zhu, H. Wang, X. Wang, C. Hao, R. Fan, D. Dastan, Z. Shi, Achieving excellent dielectric performance in polymer composites with ultralow filler loadings via constructing hollow-structured filler frameworks. Compos. Part A Appl. Sci. Manuf. 131, 105814 (2020). https://doi.org/10.1016/j.compositesa.2020.105814

    Article  CAS  Google Scholar 

  50. Z. Gao, Z. Jia, K. Wang, X. Liu, L. Bi, G. Wu, Simultaneous enhancement of recoverable energy density and efficiency of lead-free relaxor-ferroelectric BNT-based ceramics. Chem. Eng. J. 402, 125951 (2020). https://doi.org/10.1016/j.cej.2020.125951

    Article  CAS  Google Scholar 

  51. X. Gao, B. Wang, K. Wang, S. Xu, S. Liu, X. Liu, Z. Jia, G. Wu, Design of Ti3C2Tx/TiO2/PANI multi-layer composites for excellent electromagnetic wave absorption performance. J. Colloid Interface Sci. 583, 510–521 (2021). https://doi.org/10.1016/j.jcis.2020.09.094

    Article  CAS  Google Scholar 

  52. Z. Jia, K. Kou, S. Yin, A. Feng, C. Zhang, X. Liu, H. Cao, G. Wu, Magnetic Fe nanoparticle to decorate N dotted C as an exceptionally absorption-dominate electromagnetic shielding material. Compos. Part B Eng. 189, 107895 (2020). https://doi.org/10.1016/j.compositesb.2020.107895

    Article  CAS  Google Scholar 

  53. K.L. Bhowmik, K. Deb, A. Bera, R.K. Nath, B. Saha, Charge transport through polyaniline incorporated electrically conducting functional paper charge transport through polyaniline incorporated electrically conducting functional paper. J. Phys. Chem. C (2016). https://doi.org/10.1021/acs.jpcc.5b08650

    Article  Google Scholar 

  54. K. Shan, Z.Z. Yi, X.T. Yin, L. Cui, D. Dastan, H. Garmestani, F.M. Alamgir, Diffusion kinetics mechanism of oxygen ion in dense diffusion barrier limiting current oxygen sensors. J. Alloys Compd. 855, 157465 (2021). https://doi.org/10.1016/j.jallcom.2020.157465

    Article  CAS  Google Scholar 

  55. F.A. Rafiqi, K. Majid, Synthesis, characterization, luminescence and magnetic properties of composite of polyaniline with nickel bisacetylacetonate complex. Polym. Sci. Ser. B. 58, 371–383 (2016). https://doi.org/10.1134/S156009041603012X

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Director and Principal, Rajagiri School of Engineering & Technology and Bharata Mata College for supporting this work. Analytical support from Sophisticated Test and Instrumentation Centre, Cochin University of Science and Technology, School of Pure & Applied Physics, Mahatma Gandhi University and Department of Physics, Maharajas College, Ernakulam are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiny Palatty.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anju, C., Palatty, S. Investigation on dielectric properties of iron oxide nanoparticles-embedded binary transition metals-doped polyaniline-metal hybrid nanocomposites. J Mater Sci: Mater Electron 32, 1080–1091 (2021). https://doi.org/10.1007/s10854-020-04883-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04883-6

Navigation