Skip to main content
Log in

External Electric Field Effects on Electronic Properties of a Candidate Eco-friendly Biopolymer and Its Anticorrosive Properties in Acidic Media

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the theoretical/computational section of this work, external electric field effects (EF) on some electronic characteristics (at molecular/atomic scale) of the chitosan-like molecular (as biopolymer) system are studied. These results show that the mechanism of the variation of the HLG gap and consequently the electrical conductivity (IV curves and molecular Joule-like effect) and thus local molecular electron transport efficiency (\( \Delta N \)) depend on the intensity of the applied external electric field. In addition, using atoms-in-molecules theory, the electronic response (such as atomic electron density, kinetic energy and viral force) of each atomic basin and each intra-molecular section to the EF are studied. Also, based on the molecular DOS diagram, the value of the global chemical softness, and thus the inhibition efficiency, of this molecular system is acceptable. Furthermore, in the experimental section of this work, the chitosan biopolymer was used as corrosion inhibitor in H2SO4 on aluminum (AA1005). The primary corrosion techniques like electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization (PDP) was used to analyze the corrosion inhibition process. Also, EIS study reveals that corrosion is under kinetically controlled. The PDP proposed that chitosan composite is mixed-type corrosion inhibitor and inhibit corrosion by blocking the active sites presenting over the metal surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.E. Lyshevski, Nano and Molecular Electronics Handbook, CRC Press, Boca Raton, 2016

    Google Scholar 

  2. M.A. Reed and T. Lee, Molecular Nanoelectronics, Amer. Scientific Pub, Valencia, 2003

    Google Scholar 

  3. T. He, W. Emori, R.H. Zhang, P.C. Okafor, and C.R. Cheng, Detailed Characterization of Phellodendronchinense Schneid and Its Application in the Corrosion Inhibition of Carbon Steel in Acidic Media, Bioelectrochemistry, 2019, 130, p 107332

    Article  CAS  Google Scholar 

  4. E. Ituen, V. Mkpenie, E. Moses, and I. Obot, Electrochemical Kinetics, Molecular Dynamics, Adsorption and Anticorrosion Behavior of Melatonin Biomolecule on Steel Surface in Acidic Medium, Bioelectrochemistry, 2019, 129, p 42–53

    Article  CAS  Google Scholar 

  5. Q. Wang, B. Tan, H. Bao, Y. Xie, and W. Yang, Evaluation of Ficustikoua Leaves Extract as an Eco-friendly Corrosion Inhibitor for Carbon Steel in HCl Media, Bioelectrochemistry, 2019, 128, p 49–55

    Article  CAS  Google Scholar 

  6. M. Pakiet, I. Kowalczyk, R.L. Garcia, R. Moorcroft, and B. Brycki, Gemini Surfactant as Multifunctional Corrosion and Biocorrosion Inhibitors for Mild Steel, Bioelectrochemistry, 2019, 128, p 252–262

    Article  CAS  Google Scholar 

  7. M.M. Kabanda, L.C. Murulana, M. Ozcan, F. Karadag, I. Dehri, I.B. Obot, and E.E. Ebenso, Quantum Chemical Studies on the Corrosion Inhibition of Mild Steel by Some Triazoles and Benzimidazole Derivatives in Acidic Medium, Int. J. Electrochem. Sci., 2012, 7, p 5035–5056

    CAS  Google Scholar 

  8. J. Bockris and S. Srinivasan, Elucidation of the Mechanism of Electrolytic Hydrogenevolution by the Use of H-T Separation Factors, Electrochim. Acta, 1964, 9, p 31–44

    Article  CAS  Google Scholar 

  9. A. Ehsani, M.G. Mahjani, M. Hosseini, R. Safari, R. Naderi, A. Pourghasemi Hanza, and M. Mehdipour, Evaluation of Thymus Vulgaris Plant Extract as an Eco-friendly Corrosion Inhibitor for Stainless Steel 304 in Acidic Solution by Means of Electrochemical Impedance Spectroscopy, Electrochemical Noise Analysis and Density Functional Theory, J. Colloid Interface Sci., 2017, 490, p 444–451

    Article  CAS  Google Scholar 

  10. M. Hosseini, L. Fotouhi, A. Ehsani, and M. Naseri, Enhancement of Corrosion Resistance of Polypyrrole Using Metal Oxide Nanoparticles: Potentiodynamic and Electrochemical Impedance Spectroscopy Study, J. Colloid Interface Sci., 2017, 505, p 213–219

    Article  CAS  Google Scholar 

  11. M. Beikmohammadi, L. Fotouhi, A. Ehsani, and M. Naseri, Potentiodynamic and Electrochemical Impedance Spectroscopy Study of Anticorrosive Properties of p-Type Conductive Polymer/TiO2 Nanoparticles, Solid State Ion., 2018, 324, p 138–143

    Article  CAS  Google Scholar 

  12. A. Ehsani, M.G. Mahjani, M. Hosseini, R. Safari, R. Moshrefi, and M. Shiri, Evaluation of Thymus Vulgaris Plant Extract as an Eco-friendly Corrosion Inhibitor for Stainless Steel 304 in Acidic Solution by Means of Electrochemical Impedance Spectroscopy, Electrochemical Noise Analysis and Density Functional Theory, J. Colloid Interface Sci., 2017, 490, p 44–451

    Google Scholar 

  13. F.B. Waanders, S.W. Vorster, and A.J. Geldenhuys, Biopolymer Corrosion Inhibition of Mild Steel: Electrochemical/Mössbauer Results, Hyperfine Interact., 2002, 139, p 133–139

    Article  Google Scholar 

  14. O. Lundvall, M. Gulppi, M.A. Paez, A. Gonzalez, J.H. Zagal, J. Pavez, and G.E. Thompson, Copper Modified Chitosan for Protection of AA2024, Surf. Coat. Technol., 2007, 2001, p 5973–5978

    Article  Google Scholar 

  15. A.A. Aghzzaf, B. Rhouta, J. Steinmetz, E. Rocca, L. Aranda, A. Khalil, J. Yvon, and L. Daoudi, Corrosion Inhibitors Based on Chitosan-Heptanoate Modified Beidellite, Appl. Clay Sci., 2012, 65(66), p 173–178

    Article  Google Scholar 

  16. C.F. Matta and R.J. Boyd, An Introduction to the Quantum Theory of Atoms in Molecules. The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design, Wiley, Weinheim, 2007

    Book  Google Scholar 

  17. I. Bytheway, R.J. Gillespie, T.H. Tang, and R.F. Bader, Core Distortions and Geometries of the Difluorides and Dihydrides of Ca, Sr, and Ba, Inorg. Chem., 1995, 34(9), p 2407–2414

    Article  CAS  Google Scholar 

  18. S.E. O’Brien and P.L. Popelier, Quantum Molecular Similarity: Use of Atoms in Molecules Derived Quantities as QSAR Variables, ECCOMAS, Barcelona, 2000

    Google Scholar 

  19. H. Sabzyan and R. Safari, Intramolecular Thermoelectric-Like Effects in Field-Effect Molecular Nanoelectronic Devices, Euro Phys. Lett., 2012, 99(6), p 67005–67009

    Article  Google Scholar 

  20. P. Geerlings, F. De Proft, and W. Langenaeker, Conceptual Density Functional Theory, Chem. Rev., 2003, 103, p 1793–1874

    Article  CAS  Google Scholar 

  21. A. Salomon, D. Cahen, S. Lindsay, J. Tomfohr, V.B. Engelkes, and C.D. Frisbie, Comparison Electronic Transport Measurement of Organic Molecules, Adv. Mater., 2003, 15, p 1881–1890

    Article  CAS  Google Scholar 

  22. A. Vilan, Analyzing Molecular Current-Voltage Characteristics with the Simmons Tunneling Model: Scaling and Linearization, Phys. Chem. C, 2007, 111(11), p 4431–4444

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge University of Qom for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Safari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, R., Ehsani, A., Kashi, A.H. et al. External Electric Field Effects on Electronic Properties of a Candidate Eco-friendly Biopolymer and Its Anticorrosive Properties in Acidic Media. J. of Materi Eng and Perform 30, 522–534 (2021). https://doi.org/10.1007/s11665-020-05328-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05328-1

Keywords

Navigation