Skip to main content
Log in

Effect of Cu Addition on the Microstructure and Passivation Behavior of Sn Alloyed Ferritic Stainless Steel in NaCl Solution

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, the effect of Cu addition on the microstructure and corrosion passivation behavior of Sn alloyed ferritic stainless steel in 3.5 wt.% NaCl solution at 30 °C was investigated by optical microscope (OM), scanning electron microscope (SEM), energy-dispersion spectrum (EDS), potentiodynamic polarization curve and x-ray photoelectron spectroscopy (XPS). The results indicate that Cu addition has certain effect on grain refinement of ferritic stainless steel. Meanwhile, Cu addition has little influence on the cathodic corrosion process of ferritic stainless steel in 3.5 wt.% NaCl solution but shows beneficial effect on enhancing both the corrosion resistance of steel substrate and its passivation behavior. It has been found that the deposition of Cu particles at the bottom of corrosion pits is responsible for the better corrosion resistance and passivation behavior of ferritic stainless steel. Moreover, there is synergistic effect between Sn and Cu on enhancing the corrosion resistance of ferric stainless steel matrix and improving its passivation behavior in NaCl solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X. Zhang, Y. Zhang, Y.D. Wu, S.S. Ao, and Z. Luo, Effects of Melting-Mixing Ratio on the Interfacial Microstructure and Tensile Properties of Austenitic–Ferritic Stainless Steel Joints, J. Mater. Res. Technol., 2019, 8(3), p 2649–2661

    CAS  Google Scholar 

  2. X.G. Ma, J.W. Zhao, W. Du, X. Zhang, L.Z. Jiang, and Z.Y. Jiang, Quantification of Texture-Induced Ridging in Ferritic Stainless Steels 430 and 430LR During Tensile Deformation, J. Mater. Res. Technol., 2019, 8(2), p 2041–2051

    CAS  Google Scholar 

  3. N. Fujita, K. Ohmura, and A. Yamamoto, Changes of Microstructures and High Temperature Properties During High Temperature Service of Niobium Added Ferritic Stainless Steels, Mater. Sci. Eng., A, 2003, 351, p 272–281

    Google Scholar 

  4. J.S. Peltz, L.M. Antonini, S.R. Kunst, G.A. Ludwig, L.T. Fuhr, and C.F. Malfattiet, Effect of Application of the Shot Peening Process in the Corrosion Resistance of the AISI, 430 Ferritic Stainless Steel, Mater. Sci. Forum, 2014, 775–776, p 365–369

    Google Scholar 

  5. H. Luo, H.Z. Su, B.S. Li, and G.B. Ying, Electrochemical and Passive Behavior of Tin Alloyed Ferritic Stainless Steel in Concrete Environment, Appl. Surf. Sci., 2018, 439, p 232–239

    CAS  Google Scholar 

  6. J. Shu, H.Y. Bi, X. Li, and Z. Xu, The Effect of Copper and Molybdenum on Pitting Corrosion and Stress Corrosion Cracking Behavior of Ultra-Pure Ferritic Stainless Steels, Corros. Sci., 2012, 57, p 89–98

    CAS  Google Scholar 

  7. B. Liu, X. Mu, Y. Yang, L. Hao, X.Y. Ding, J.H. Dong, Z. Zhang, H.X. Hou, and W. Ke, Effect of Tin Addition on Corrosion Behavior of a Low-Alloy Steel in Simulated Costal-Industrial Atmosphere, J. Mater. Sci. Technol., 2019, 35, p 1228–1239

    Google Scholar 

  8. W.F. Wang, Effect of Tin Addition on the Microstructure Development and Corrosion Resistance of Sintered 304L Stainless Steels, J. Mater. Eng. Perform., 1999, 8(6), p 649–652

    CAS  Google Scholar 

  9. X.H. Hao, J.H. Dong, X. Mu, J. Wei, C.G. Wang, and W. Ke, Influence of Sn and Mo on Corrosion Behavior of Ferrite-Pearlite Steel in the Simulated Bottom Plate Environment of Cargo Oil Tank, J. Mater. Sci. Technol., 2019, 35, p 799–811

    Google Scholar 

  10. H.X. Li, H. Yu, T. Zhou, B.L. Yin, S.J. Yin, and Y.L. Zhang, Effect of Tin on the Corrosion Behavior of Sea-Water Corrosion-Resisting Steel, Mater. Des., 2015, 84(5), p 1–9

    CAS  Google Scholar 

  11. T. Kamimura, K. Kashima, K. Sugae, H. Miyuki, and T. Kudo, The Role of Chloride Ion on the Atmospheric Corrosion of Steel and Corrosion Resistance of Sn-Bearing Steel, Corros. Sci., 2012, 62, p 34–41

    CAS  Google Scholar 

  12. N.D. Nam, M.J. Kim, Y.W. Jang, and J.G. Kim, Effect of Tin on the Corrosion Behavior of Low-Alloy Steel in an Acid Chloride Solution, Corros. Sci., 2010, 52, p 14–20

    Google Scholar 

  13. N.D. Greene, C.R. Bishop, and M. Stern, Corrosion and Electrochemical Behavior of Chromium-Noble Metal Alloys, J. Electrochem. Soc., 1961, 108(9), p 836–841

    CAS  Google Scholar 

  14. T. Ujiro, S. Satoh, R.W. Staehle, and W.H. Smyrl, Effect of Alloying Cu on the Corrosion Resistance of Stainless Steels in Chloride Media, Corros. Sci., 2001, 43(11), p 2185–2200

    CAS  Google Scholar 

  15. A. Pardo, M.C. Merino, M. Carboneras, F. Viejo, R. Arrabal, and J. Munoz, Influence of Cu and Sn Content in the Corrosion of AISI, 304 and 316 Stainless Steels in H2SO4, Corros. Sci., 2006, 48(5), p 1075–1092

    CAS  Google Scholar 

  16. X.J. Zhang and Z.Y. Liu, Synergy Effects of Cu and Sn on Pitting Corrosion Resistance of Ultra-Purified Medium Chromium Ferritic Stainless Steel, IOP Conf. Ser.: Mater. Sci. Eng., 2017, 182(1), p 012032

    Google Scholar 

  17. M. Sun, M. Luo, C. Lu, T.W. Liu, Y.P. Wu, L.Z. Jiang, and J. Li, Effect of Alloying Tin on the Corrosion Characteristics of Austenitic Stainless Steel in Sulfuric Acid and Sodium Chloride Solutions, Acta Metall. Sin. Engl. Lett., 2015, 28(9), p 1089–1096

    CAS  Google Scholar 

  18. A. Pardo, M.C. Merino, M. Carboneras, A.E. Coy, and R. Arrabal, Pitting Corrosion Behaviour of Austenitic Stainless Steels–Combining Effects of Mn and Mo Additions, Corros. Sci., 2008, 50(6), p 1796–1806

    CAS  Google Scholar 

  19. Y. Li, G. Yang, Z.H. Jiang, C.Y. Chen, S. Sun, and P.F. Du, Effects of Ce on the Microstructure and Properties of 27Cr-3.8 Mo-2Ni Super-Ferritic Stainless Steels, Ironmak. Steelmak., 2018, 47(1), p 67–76

    CAS  Google Scholar 

  20. D. Ye, J. Li, W. Jiang, J. Su, and K.Y. Zhao, Effect of Cu Addition on Microstructure and Mechanical Properties of 15% Cr Super Martensitic Stainless Steel, Mater. Des., 2012, 41, p 16–22

    Google Scholar 

  21. G.T. Burstein, P.C. Pistorius, and S.P. Mattin, The Nucleation and Growth of Corrosion Pits on Stainless Steel, Corros. Sci., 1993, 35(1–4), p 57–62

    CAS  Google Scholar 

  22. H. Su, X.B. Luo, C.F. Yang, F. Chai, and H. Li, Effects of Cu on Corrosion Resistance of Low Alloyed Steels in Acid Chloride Media, J. Iron. Steel Res. Int., 2014, 21(6), p 619–624

    CAS  Google Scholar 

  23. A.V. Naumkin, A. Kraut-Vass, and S.W. Gaarenstroom, NIST X-ray Photoelectron Spectroscopy Database, Cedric J. Powell, 2012, https://doi.org/10.18434/T4T88K

    Article  Google Scholar 

  24. C.T. Liu and J.K. Wu, Influence of pH on the Passivation Behavior of 254SMO Stainless Steel in 3.5% NaCl Solution, Corros. Sci., 2007, 49(5), p 2198–2209

    CAS  Google Scholar 

  25. J. Liu, T. Zhang, G.Z. Meng, Y.W. Shao, and F.H. Wang, Effect of Pitting Nucleation on Critical Pitting Temperature of 316L Stainless Steel by Nitric Acid Passivation, Corros. Sci., 2015, 91, p 232–244

    CAS  Google Scholar 

  26. P. Ghods, O.B. Isgor, J.R. Brown, F. Bensebaa, and D. Kingston, XPS Depth Profiling Study on the Passive Oxide Film of Carbon Steel in Saturated Calcium Hydroxide Solution and the Effect of Chloride on the Film Properties, Appl. Surf. Sci., 2011, 257(10), p 4669–4677

    CAS  Google Scholar 

  27. T.J. Mesquita, E. Chauveau, M. Mantel, and R.P. Nogueira, A XPS Study of the Mo Effect on Passivation Behaviors for Highly Controlled Stainless Steels in Neutral and Alkaline Conditions, Appl. Surf. Sci., 2013, 270, p 90–97

    CAS  Google Scholar 

  28. K. Volgmann, F. Voigts, and W. Maus-Friedrichs, The Interaction of Oxygen Molecules with Iron Films Studied with MIES, UPS and XPS, Surf. Sci., 2010, 604(11–12), p 906–913

    CAS  Google Scholar 

  29. H. Luo, X.G. Li, C.F. Dong, K. Xiao, and X.Q. Cheng, Influence of UV Light on Passive Behavior of the 304 Stainless Steel in Acid Solution, J. Phys. Chem. Solids, 2013, 74(5), p 691–697

    CAS  Google Scholar 

  30. Z.Y. Ai, J.Y. Jiang, W. Sun, D. Song, H. Ma, J.C. Zhang, and D.Q. Wang, Passive Behaviour of Alloy Corrosion-Resistant Steel Cr10Mo1 in Simulating Concrete Pore Solutions with Different pH, Appl. Surf. Sci., 2016, 389, p 1126–1136

    CAS  Google Scholar 

  31. A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, and N.S. Mclntyre, Investigation of Multiplet Splitting of Fe 2p XPS Spectra and Bonding in Iron Compounds, Surf. Interface Anal., 2004, 36(12), p 1564–1574

    CAS  Google Scholar 

  32. L.A.S. Ries, M.D.C. Belo, M.G.S. Ferreira, and L. Muller, Chemical Composition and Electronic Structure of Passive Films Formed on Alloy 600 in Acidic Solution, Corros. Sci., 2008, 50(3), p 676–686

    CAS  Google Scholar 

  33. A. Lazauskas, V. Grigaliūnas, A. Guobienė, M. Andrulevičius, and J. Baltrusaitis, Atomic Force Microscopy and X-Ray Photoelectron Spectroscopy Evaluation of Adhesion and Nanostructure of Thin Cr Films, Thin Solid Films, 2012, 520(19), p 6328–6333

    CAS  Google Scholar 

  34. Y. Han, J. Mei, Q.J. Peng, E.H. Han, and W. Ke, Effect of Electropolishing on Corrosion of Nuclear Grade 316L Stainless Steel in Deaerated High Temperature Water, Corros. Sci., 2016, 112, p 625–634

    CAS  Google Scholar 

  35. C.O.A. Olsson and D. Landolt, Passive Films on Stainless Steels-Chemistry, Structure and Growth, Electrochim. Acta, 2003, 48(9), p 1093–1104

    CAS  Google Scholar 

  36. R.O. Ansell, T. Dickinson, A.F. Povey, and P.M.A. Sherwood, X-Ray Photoelectron Spectroscopic Studies of Tin Electrodes After Polarization in Sodium Hydroxide Solution, J. Electrochem. Soc., 1977, 124(9), p 1360–1364

    CAS  Google Scholar 

  37. J. Huang, X. Wu, and E.H. Han, Electrochemical Properties and Growth Mechanism of Passive Films on Alloy 690 in High-Temperature Alkaline Environments, Corros. Sci., 2010, 52(10), p 3444–3452

    CAS  Google Scholar 

  38. G. Okamoto, Passive Film of 18-8 Stainless Steel Structure and Its Function, Corros. Sci., 1973, 13(6), p 471–489

    CAS  Google Scholar 

  39. M.N. Wang, C. Qiao, X.L. Jiang, L. Hao, and X.H. Liu, Microstructure Induced Galvanic Corrosion Evolution of SAC305 Solder Alloys in Simulated Marine Atmosphere, J. Mater. Sci. Technol., 2020, 51, p 40–53

    Google Scholar 

  40. C. Qiao, L.F. Shen, L. Hao, X. Mu, J.H. Dong, W. Ke, J. Liu, and B. Liu, Corrosion Kinetics and Patina Evolution of Galvanized Steel in a Simulated Coastal-Industrial Atmosphere, J. Mater. Sci. Technol., 2019, 35, p 2345–2356

    Google Scholar 

  41. C.I. House and G.H. Kelsall, Potential-pH Diagrams for the Sn/H2O-Cl System, Electrochim. Acta, 1984, 29(10), p 1459–1464

    CAS  Google Scholar 

  42. C. Qiao, M.N. Wang, L. Hao, X.L. Jiang, X.H. Liu, Ch Thee, and X.Z. An, In-Situ EIS Study on the Initial Corrosion Evolution Behavior of SAC305 Solder Alloy Covered with NaCl Solution, J. Alloys Compd., 2021, 852, p 156953

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support by National Natural Science Foundation of China (51674071).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huabing Li or Zhouhua Jiang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yao, C., Li, H. et al. Effect of Cu Addition on the Microstructure and Passivation Behavior of Sn Alloyed Ferritic Stainless Steel in NaCl Solution. J. of Materi Eng and Perform 29, 8422–8430 (2020). https://doi.org/10.1007/s11665-020-05303-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05303-w

Keywords

Navigation