Skip to main content
Log in

The Influence of Graphene Nanoplatelets on the Tensile and Impact Behavior of Glass-Fiber-Reinforced Polymer Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of addition of graphene nanoplatelets (GnPs) on the mechanical behavior of unidirectional S-glass fiber based composites fabricated through the hand layup technique, followed by hot compression moulding were investigated. The GnPs with varying concentrations were introduced into the composites in two different ways, i.e., (1) GnPs in matrix; (2) GnPs on the fiber surface (GnPs coated fibers fabric). The influence of method of incorporation of GnPs in the composites were evaluated from the mechanical properties, i.e., tensile, fiber pull-out and drop weight impact tests. The composite containing 0.5 wt.% GnPs on fiber surface showed the highest tensile strength with an improvement of 212% and the composite containing 0.5 wt.% GnPs in matrix showed higher energy absorption with 52% over the pristine composite. The influence of 0.5 wt.% GnPs added on the fiber surface improved the interfacial shear strength by 136% over pristine due to the enhancement of adhesion at the fiber/matrix interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. N.A. Siddiqui, M.L. Sham, B.Z. Tang, A. Munir, and J.K. Kim, Tensile Strength of Glass Fibres with Carbon Nanotube-Epoxy Nanocomposite Coating, Compos. Part A Appl. Sci. Manuf., 2009, 40(10), p 1606–1614. https://doi.org/10.1016/j.compositesa.2009.07.005

    Article  CAS  Google Scholar 

  2. A. Bianco, H.M. Cheng, T. Enoki, Y. Gogotsi, R.H. Hurt, N. Koratkar, T. Kyotani, M. Monthioux, C.R. Park, J.M.D. Tascon, J. Zhang, A. Bianco, H.M. Cheng, T. Enoki, Y. Gogotsi, and R.H. Hurt, All in the Graphene Family—A Recommended Nomenclature for Two-Dimensional Carbon Materials, Carbon N. Y., 2013, 65, p 1–6

    Article  CAS  Google Scholar 

  3. S.G. Prolongo, A. Jiménez-Suárez, R. Moriche, and A. Ureña, Graphene Nanoplatelets Thickness and Lateral Size Influence on the Morphology and Behavior of Epoxy Composites, Eur. Polym. J., 2014, 53, p 292–301

    Article  CAS  Google Scholar 

  4. T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, and J.H. Lee, Recent Advances in Graphene Based Polymer Composites, Prog. Polym. Sci., 2010, 35(11), p 1350–1375. https://doi.org/10.1016/j.progpolymsci.2010.07.005

    Article  CAS  Google Scholar 

  5. A.K. Geim, K.S. Novoselov, A.K. Geim, and K.S. Novolesov, The Rise of Graphene, Nat. Mater., 2007, 6(3), p 183–191

    Article  CAS  Google Scholar 

  6. L.M. Viculis, J.J. Mack, O.M. Mayer, H.T. Hahn, and R.B. Kaner, Intercalation and Exfoliation Routes to Graphite Nanoplatelets, J. Mater. Chem., 2005, 15(9), p 974–978

    Article  CAS  Google Scholar 

  7. M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z. Yu, and N. Koratkar, Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content, ACS Nano, 2009, 3(12), p 3884–3890. https://doi.org/10.1021/nn9010472

    Article  CAS  Google Scholar 

  8. R. Moriche, S.G. Prolongo, M. Sánchez, A. Jiménez-Suárez, M.J. Sayagués, and A. Ureña, Morphological Changes on Graphene Nanoplatelets Induced during Dispersion into an Epoxy Resin by Different Methods, Compos. Part B Eng., 2015, 72, p 199–205. https://doi.org/10.1016/j.compositesb.2014.12.012

    Article  CAS  Google Scholar 

  9. G.V. Seretis, G. Kouzilos, D.E. Manolakos, and C.G. Provatidis, On the Graphene Nanoplatelets Reinforcement of Hand Lay-up Glass Fabric/Epoxy Laminated Composites, Compos. Part B Eng., 2017, 118, p 26–32. https://doi.org/10.1016/j.compositesb.2017.03.015

    Article  CAS  Google Scholar 

  10. B. Ahmadi-Moghadam and F. Taheri, Influence of Graphene Nanoplatelets on Modes I, II, and III, Interlaminar Fracture Toughness of Fiber-Reinforced Polymer Composites, Eng. Fract. Mech., 2015, 143, p 97–107. https://doi.org/10.1016/j.engfracmech.2015.06.026

    Article  Google Scholar 

  11. J. Jia, X. Du, C. Chen, X. Sun, Y.W. Mai, and J.K. Kim, 3D Network Graphene Interlayer for Excellent Interlaminar Toughness and Strength in Fiber Reinforced Composites, Carbon N. Y., 2015, 95, p 978–986. https://doi.org/10.1016/j.carbon.2015.09.001

    Article  CAS  Google Scholar 

  12. N.T. Kamar, M.M. Hossain, A. Khomenko, M. Haq, L.T. Drzal, and A. Loos, Interlaminar Reinforcement of Glass Fiber/Epoxy Composites with Graphene Nanoplatelets, Compos. Part A Appl. Sci. Manuf., 2015, 70, p 82–92. https://doi.org/10.1016/j.compositesa.2014.12.010

    Article  CAS  Google Scholar 

  13. G. Lubineau and A. Rahaman, A Review of Strategies for Improving the Degradation Properties of Laminated Continuous-Fiber/Epoxy Composites with Carbon-Based Nanoreinforcements, Carbon, 2012, https://doi.org/10.1016/j.carbon.2012.01.059

    Article  Google Scholar 

  14. A. Warrier, A. Godara, O. Rochez, L. Mezzo, F. Luizi, L. Gorbatikh, S.V. Lomov, A.W. VanVuure, and I. Verpoest, The Effect of Adding Carbon Nanotubes to Glass/Epoxy Composites in the Fibre Sizing and/or the Matrix, Compos. Part A Appl. Sci. Manuf., 2010, 41(4), p 532–538. https://doi.org/10.1016/j.compositesa.2010.01.001

    Article  CAS  Google Scholar 

  15. A. Godara, L. Gorbatikh, G. Kalinka, A. Warrier, O. Rochez, L. Mezzo, F. Luizi, A.W. van Vuure, S.V. Lomov, and I. Verpoest, Interfacial Shear Strength of a Glass Fiber/Epoxy Bonding in Composites Modified with Carbon Nanotubes, Compos. Sci. Technol., 2010, 70(9), p 1346–1352. https://doi.org/10.1016/j.compscitech.2010.04.010

    Article  CAS  Google Scholar 

  16. U. Zaheer, A.A. Khurram, and T. Subhani, A Treatise on Multiscale Glass Fiber Epoxy Matrix Composites Containing Graphene Nanoplatelets, Adv. Compos. Hybrid Mater., 2018, 1(4), p 705–721. https://doi.org/10.1007/s42114-018-0057-y

    Article  CAS  Google Scholar 

  17. G.V. Seretis, I.D. Theodorakopoulos, D.E. Manolakos, and C.G. Provatidis, Effect of Sonication on the Mechanical Response of Graphene Nanoplatelets/Glass Fabric/Epoxy Laminated Nanocomposites, Compos. Part B Eng., 2018, 147, p 33–41. https://doi.org/10.1016/j.compositesb.2018.04.034

    Article  CAS  Google Scholar 

  18. S. Dolati, A. Fereidoon, and A. Sabet, Hail Impact Damage Behaviors of Glass Fiber Reinforced Epoxy Filled with Nanoclay, J. Compos. Mater., 2014, 48(10), p 1241–1249. https://doi.org/10.1177/0021998313484950

    Article  Google Scholar 

  19. W. Rasband, “Image J,” U. S. National Institutes of Health, Bethesda, Maryland, USA, 2018, imagej.nih.gov/ij/.

  20. S.-S.S. Du Sen, F. Li, H.M.H.-M. Xiao, Y.-Q.Y.Q. Li, N. Hu, and S.-Y.S.Y. Fu, Tensile and Flexural Properties of Graphene Oxide Coated-Short Glass Fiber Reinforced Polyethersulfone Composites, Compos. Part B Eng., 2016, 99, p 407–415. https://doi.org/10.1016/j.compositesb.2016.06.023

    Article  CAS  Google Scholar 

  21. D. Pedrazzoli, A. Pegoretti, and K. Kalaitzidou, Synergistic Effect of Graphite Nanoplatelets and Glass Fibers in Polypropylene Composites, J. Appl. Polym. Sci., 2015, 132(12), p 1–8

    Google Scholar 

  22. G. Belingardi and R. Vadori, Low Velocity Impact Tests of Laminate Glass-Fiber-Epoxy Matrix Composite Material Plates, 2002, 27, p 213–229. https://doi.org/10.1016/S0734-743X(01)00040-9

    Article  Google Scholar 

  23. M.J. Emerson, V.A. Dahl, K. Conradsen, L.P. Mikkelsen, and A.B. Dahl, A Multimodal Data-Set of a Unidirectional Glass Fibre Reinforced Polymer Composite, Data Br., 2018, 18, p 1388–1393. https://doi.org/10.1016/j.dib.2018.04.039

    Article  Google Scholar 

  24. S. Keck and M. Fulland, Effect of Fibre Volume Fraction and Fibre Direction on Crack Paths in Unidirectional Flax Fibre-Reinforced Epoxy Composites under Static Loading, Theor. Appl. Fract. Mech., 2019, 101, p 162–168. https://doi.org/10.1016/j.tafmec.2019.01.028

    Article  CAS  Google Scholar 

  25. V.V. Dubrovsky, V.A. Shapovalov, V.N. Aderikha, and S.S. Pesetskii, Effect of Hybrid Filling with Short Glass Fibers and Expanded Graphite on Structure, Rheological and Mechanical Properties of Poly(Ethylene Terephthalate), Mater. Today Commun., 2018, 17, p 15–23. https://doi.org/10.1016/j.mtcomm.2018.08.002

    Article  CAS  Google Scholar 

  26. A. Bourmaud, J. Mérotte, D. Siniscalco, M. Le Gall, V. Gager, A. Le Duigou, F. Pierre, K. Behlouli, O. Arnould, J. Beaugrand, and C. Baley, Main Criteria of Sustainable Natural Fibre for Efficient Unidirectional Biocomposites, Compos. Part A Appl. Sci. Manuf., 2019, 124, p 105504

    Article  CAS  Google Scholar 

  27. G.V. Seretis, G.N. Kouzilos, D.E. Manolakos, and C.G. Provatidis, Multi-Objective Optimization of Post-Curing Process for GNPs Reinforced Glass Fabric/Epoxy Nanocomposite Laminae, Polym. Compos., 2018, 39(S4), p E2483–E2489. https://doi.org/10.1002/pc.24777

    Article  CAS  Google Scholar 

  28. H. Mahmood, L. Vanzetti, M. Bersani, and A. Pegoretti, Mechanical Properties and Strain Monitoring of Glass-Epoxy Composites with Graphene-Coated Fibers, Compos. Part A Appl. Sci. Manuf., 2018, 107, p 112–123. https://doi.org/10.1016/j.compositesa.2017.12.023

    Article  CAS  Google Scholar 

  29. M. Rafiee, F. Nitzsche, and M.R. Labrosse, Fabrication and Experimental Evaluation of Vibration and Damping in Multiscale Graphene/Fiberglass/Epoxy Composites, J. Compos. Mater., 2019, 53(15), p 2105–2118

    Article  CAS  Google Scholar 

  30. S. Menbari, A. Ashori, H. Rahmani, and R. Bahrami, Viscoelastic Response and Interlaminar Delamination Resistance of Epoxy/Glass Fiber/Functionalized Graphene Oxide Multi-Scale Composites, Polym. Test., 2016, 54, p 186–195. https://doi.org/10.1016/j.polymertesting.2016.07.016

    Article  CAS  Google Scholar 

  31. ASTM, Standard Test Method for Measuring the Damage Resistance of a Fiber-Renforced Polymer Matrix Composite to a Drop-Weight Impact, ASTM Stand., 2012, https://doi.org/10.1520/d7136_d7136m-15

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the technical support for testing drop weight impact test from the Department of Aerospace Engineering, Madras Institute of Technology, Anna University, Chennai, Tamil Nadu, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vigneshwaran Gnanakkan Samuel Veerakumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veerakumar, V.G.S., Shanmugavel, B.P., Paskaramoorthy, R. et al. The Influence of Graphene Nanoplatelets on the Tensile and Impact Behavior of Glass-Fiber-Reinforced Polymer Composites. J. of Materi Eng and Perform 30, 596–609 (2021). https://doi.org/10.1007/s11665-020-05335-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05335-2

Keywords

Navigation