Skip to main content

Advertisement

Log in

Microstructure and Mechanical Properties of Powder Metallurgical TiAl-Based Alloy Made by Micron Bimodal-Sized Powders

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Three powder metallurgical Ti-48Al-2Cr-2Nb compacts were prepared using spherical pre-alloyed powders, mechanically milled powders, and a mixture of the spherical pre-alloyed powders and the mechanical milled powders in a weight ratio of 1:4. Different microstructures corresponding to coarse grains, ultrafine grains, and bimodal-size grains, respectively, were obtained. The compact with a bimodal grain structure exhibits a good combination of high-yield compressive strength (~ 1393 MPa) and improved compression ratio to fracture (~ 13.9%) at room temperature due to the effects of back-stress and ductile γ-TiAl single-phase layer generated near the ultrafine/coarse grain interface. At high temperatures, the compressive properties of the compact with the bimodal grain size distribution are sensitive to the temperature. A relatively high deformation resistance is achieved at 750 °C. At this temperature, the coarse grain region of the bimodal grain-sized microstructure undergoes more strain, and the dynamic recrystallization is promoted with increasing strain, improving the ductility. By contrast, the ultrafine grains in the bimodal grain size microstructure dominate the dynamic softening when the temperature is higher than 850 °C due to their accelerated dynamic recrystallization and easy grain boundary slip that are responsible for the good formability and the sharp decrease in deformation resistance of this alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F. Appel, H. Clemens, and F.D. Fischer, Modeling Concepts for Intermetallic Titanium Aluminides, Prog. Mater Sci., 2016, 81, p 55–124

    Article  CAS  Google Scholar 

  2. Y.W. Kim and S.L. Kim, Advances in Gammalloy Materials–Processes–Application Technology: Successes, Dilemmas, and Future, JOM, 2018, 70(4), p 553–560

    Article  Google Scholar 

  3. C.C. Shi, M.L. Han, K.F. Zhang, and Z. Lu, Effects of Sintering Temperature on Microstructure Evolution and Hot Deformation Behavior of TiAl-Based Alloys Prepared by Spark Plasma Sintering, JOM, 2018, 70(11), p 2739–2745

    Article  CAS  Google Scholar 

  4. H.F. Sun, X.W. Li, J. Feng, and W.B. Fang, Characterization of Powder Metallurgy High Nb-Containing TiAl-Based Alloy, Trans. Nonferrous Met. Soc. China, 2012, 22, p S491–S495

    Article  CAS  Google Scholar 

  5. L.M. Hsiung and T.G. Nieh, Microstructures and Properties of Powder Metallurgy TiAl Alloys, Mater. Sci. Eng., A, 2004, 364, p 1–10

    Article  Google Scholar 

  6. Z. Dong, N. Liu, W.Q. Hu, Z.Q. Ma, C. Li, C.X. Liu, Q.Y. Guo, and Y.C. Liu, Controlled Synthesis of High-Quality W-Y2O3 Composite Powder Precursor by Ascertaining the Synthesis Mechanism Behind the Wet Chemical Method, J. Mater. Sci. Technol., 2020, 36, p 118–127

    Article  Google Scholar 

  7. W.Q. Hu, Z. Dong, L.M. Yu, Z.Q. Ma, and Y.C. Liu, Synthesis of W-Y2O3 Alloys by Freeze-Drying and Subsequent Low Temperature Sintering: Microstructure Refinement and Second Phase Particles Regulation, J. Mater. Sci. Technol., 2020, 36, p 84–90

    Article  Google Scholar 

  8. S.L. Xiao, L.J. Xu, Y.Y. Chen, and H.B. Yu, Microstructure and Mechanical Properties of TiAl-Based Alloy Prepared by Double Mechanical Milling and Spark Plasma Sintering, Trans. Nonferrous Met. Soc. China, 2012, 22, p 1086–1091

    Article  CAS  Google Scholar 

  9. Y. Wang, C. Zhang, Y. Liu, S.X. Zhao, and J.B. Li, Microstructure Characterization and Mechanical Properties of TiAl-Based Alloys Prepared by Mechanical Milling and Spark Plasma Sintering, Mater. Charact., 2017, 128, p 75–84

    Article  CAS  Google Scholar 

  10. M. Schloffer, F. Iqbal, H. Gabrisch, E. Schwaighofer, F.P. Schimansky, S. Mayer, A. Stark, T. Lippmann, M. Göken, F. Pyczak, and H. Clemens, Microstructure Development and Hardness of a Powder Metallurgical Multi Phase γ-TiAl Based Alloy, Intermetallics, 2012, 22, p 231–240

    Article  CAS  Google Scholar 

  11. V.N. Nadakuduru, D.L. Zhang, B. Gabbitas, and Y.L. Chiu, Tensile Properties and Fracture Behaviour of An Ultrafine Grained Ti-47Al-2Cr (at.%) Alloy at Room and Elevated Temperatures, J. Mater. Sci., 2012, 47(3), p 1223–1233

    Article  CAS  Google Scholar 

  12. H.W. Liu and K.P. Plucknett, Titanium Aluminide (Ti-48Al) Powder Synthesis, Size Refinement and Sintering, Adv. Powder Technol., 2017, 28(1), p 314–323

    Article  CAS  Google Scholar 

  13. X. Zhou, T.F. Ma, L.C. Zhang, Y.S. Zhang, and P.X. Zhang, Mechanical Property and Microstructure Evolution of Nitrogen-Modified Ti-6Al-4 V Alloy with Core-Shell Structure by Hot Compression, Mater. Charact., 2018, 142, p 270–275

    Article  CAS  Google Scholar 

  14. H.T. Hu, L.J. Huang, L. Geng, J.F. Sun, and H. Tian, High Temperature Mechanical Properties of As-Extruded TiBw/Ti60 Composites with Ellipsoid Network Architecture, J. Alloys Compd., 2016, 688, p 958–966

    Article  CAS  Google Scholar 

  15. R.N. Shahid and S. Scudino, Strengthening of Al-Fe3Al Composites by the Generation of Harmonic Structures, Sci. Rep., 2018, 8(1), p 64–84

    Article  Google Scholar 

  16. Y. Wang, M. Chen, F. Zhou, and E. Ma, High Tensile Ductility in a Nanostructured Metal, Nature, 2002, 419(6910), p 912–915

    Article  CAS  Google Scholar 

  17. S.K. Vajpai, C. Sawangrat, O. Yamaguchi, O.P. Ciuca, and K. Ameyama, Effect of Bimodal Harmonic Structure Design on the Deformation Behaviour and Mechanical Properties of Co-Cr-Mo Alloy, Mater. Sci. Eng., C, 2016, 58, p 1008–1015

    Article  CAS  Google Scholar 

  18. S. Kikuchi, Y. Hayami, T. Ishiguri, B. Guennec, A. Ueno, M. Ota, and K. Ameyama, Effect of Bimodal Grain Size Distribution on Fatigue Properties of Ti-6Al-4 V Alloy with Harmonic Structure Under Four-Point Bending, Mater. Sci. Eng., A, 2017, 687, p 269–275

    Article  CAS  Google Scholar 

  19. F. Mompiou, D. Tingaud, Y. Chang, B. Gault, and G. Dirras, Conventional vs Harmonic-Structured β-Ti-25Nb-25Zr Alloys: A Comparative Study of Deformation Mechanisms, Acta Mater., 2018, 161, p 420–430

    Article  CAS  Google Scholar 

  20. R.X. Zheng, Z. Zhang, M. Nakatani, M. Ota, X. Chen, C.L. Ma, and K. Ameyama, Enhanced Ductility in Harmonic Structure Designed SUS316L Produced by High Energy Ball Milling and Hot Isostatic Sintering, Mater. Sci. Eng., A, 2016, 674, p 212–220

    Article  CAS  Google Scholar 

  21. K. Edalati, S. Toh, H. Iwaoka, M. Watanabe, Z. Horita, D. Kashioka, K. Kishida, and H. Inui, Ultrahigh Strength and High Plasticity in TiAl Intermetallics with Bimodal Grain Structure and Nanotwins, Scripta Mater., 2012, 67(10), p 814–817

    Article  CAS  Google Scholar 

  22. L. Cheng, Y. Chen, J.S. Li, and E. Bouzy, Superplastic Deformation Mechanism of a γ-TiAl Alloy with Coarse and Bimodal Grain Structure, Mater. Lett., 2017, 194, p 58–61

    Article  CAS  Google Scholar 

  23. S.K. Vajpai and K. Ameyama, A Novel Powder Metallurgy Processing Approach to Prepare Fine-Grained Ti-rich TiAl-Based Alloys from Pre-alloyed Powders, Intermetallics, 2013, 42, p 146–155

    Article  CAS  Google Scholar 

  24. M. Nishida, T. Tateyama, R. Tomoshige, K. Morita, and A. Chiba, Electron Microscopy Studies of Ti-47 at.% Al Powder Produced by Plasma Rotating Electrode Process, Scripta Metal. Mater., 1992, 27(3), p 335–340

    Article  CAS  Google Scholar 

  25. Y. Liu, X.P. Liang, B. Liu, W.W. He, J.B. Li, Z.Y. Gan, and Y.H. He, Investigations on Processing Powder Metallurgical High-Nb TiAl Alloy Sheets, Intermetallics, 2014, 55, p 80–89

    Article  Google Scholar 

  26. H.Z. Niu, T.X. Gao, Q.Q. Sun, H.R. Zhang, D.L. Zhang, and G.L. Liu, Prior Particle Boundaries and Microstructural Homogenization of a β-Solidifying γ-TiAl Alloy Fabricated from Prealloyed Powder, Mater. Sci. Eng., A, 2018, 737, p 151–157

    Article  CAS  Google Scholar 

  27. T.F. Broderick, A.G. Jackson, H. Jones, and F.H. Froes, The Effect of Cooling Conditions on the Microstructure of Rapidly Solidified Ti6A14V, Metall. Trans. A, 1985, 16, p 1951–1959

    Article  Google Scholar 

  28. W.W. He, Y. Liu, H.P. Tang, Y.P. Li, B. Liu, X.P. Liang, and Z.P. Xi, Microstructural Characteristics and Densification Behavior of High-Nb TiAl Powder Produced by Plasma Rotating Electrode Process, Mater. Des., 2017, 132, p 275–282

    Article  CAS  Google Scholar 

  29. P. Bhattacharya, P. Bellon, R.S. Averback, and S.J. Hales, Nanocrystalline TiAl Powder Synthesized by High-Energy Ballmilling: Effects of Milling Parameters on Yield and Contamination, J. Alloys Compd., 2004, 368, p 187–196

    Article  CAS  Google Scholar 

  30. M. Lamirand, J.-L. Bonnentien, G. Ferrière, S. Guérin, and J.-P. Chevalier, Effects of Interstitial Oxygen on Microstructure and Mechanical Properties of Ti-48Al-2Cr-2Nb with Fully Lamellar and Duplex Microstructures, Metall. Trans. A, 2006, 37, p 2369–2378

    Article  Google Scholar 

  31. G. Wang, Z. Zheng, L.T. Chang, L. Xu, Y.Y. Cui, and R. Yan, Characterization of TiAl Pre-alloyed Powder and Its Densification Microstructure, Acta Metall. Sinica, 2011, 47(10), p 1263–1269

    CAS  Google Scholar 

  32. Y. Pan, X. Lu, C.C. Liu, T.L. Hui, C. Zhang, and X.H. Qu, Sintering Densification, Microstructure and Mechanical Properties of Sn-Doped High Nb-Containing TiAl Alloys Fabricated by Pressureless Sintering, Intermetallics, 2020, 125, p 106891

    Article  CAS  Google Scholar 

  33. J.P. Sun, Z.Q. Yang, J. Han, H. Liu, D. Song, J.H. Jiang, and A.B. Ma, High Strength and Ductility AZ91 Magnesium Alloy with Multi-heterogenous Microstructures Prepared by High-Temperature ECAP and Short-Time Aging, Mater. Sci. Eng., A, 2018, 734(12), p 485–490

    Article  CAS  Google Scholar 

  34. N. Cui, Q.Q. Wu, J. Wang, B.J. Lv, and F.T. Kong, The Directional Solidification, Microstructural Characterization and Deformation Behavior of β-Solidifying TiAl Alloy, Materials, 2019, 12(8), p 1203

    Article  CAS  Google Scholar 

  35. N. Cui, F.T. Kong, X.P. Wang, Y.Y. Chen, and H.T. Zhou, Microstructural Evolution, Hot Workability, and Mechanical Properties of Ti-43Al-2Cr-2Mn-0.2Y Alloy, Mater. Des., 2016, 89, p 1020–1027

    Article  CAS  Google Scholar 

  36. Z.P. Wan, Y. Sun, L.X. Hu, and H. Yu, Dynamic Softening Behavior and Microstructural Characterization of TiAl-Based Alloy During Hot Deformation, Mater. Charact., 2017, 130, p 25–32

    Article  CAS  Google Scholar 

  37. X.B. Gong, Z.X. Duan, W. Pei, and H. Chen, Superplastic Deformation Mechanisms of Superfine/Nanocrystalline Duplex PM-TiAl-Based Alloy, Materials, 2017, 10(9), p 1103

    Article  Google Scholar 

  38. Y.D. Chu, J.S. Li, L. Zhu, Y. Liu, B. Tang, and H.C. Kou, Microstructural Evolution Resulting from Different Deformation Mechanisms of a High-Nb-Containing TiAl Alloy with Harmonic Structure During Elevated-Temperature Deformation, Mater. Lett., 2019, 242, p 35–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 51974032 and 51604034) and the Science and Technology Development Program of Jilin Province (No. 20190302003GX).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Han or Xu Ran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Han, Y., Yan, S. et al. Microstructure and Mechanical Properties of Powder Metallurgical TiAl-Based Alloy Made by Micron Bimodal-Sized Powders. J. of Materi Eng and Perform 30, 269–280 (2021). https://doi.org/10.1007/s11665-020-05342-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05342-3

Keywords

Navigation