Skip to main content
Log in

A smoothing quasi-Newton method for solving general second-order cone complementarity problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Recently, there are much interests in studying smoothing Newton method for solving montone second-order cone complementarity problem (SOCCP) or SOCCPs with Cartesian \(P/P_0\)-property. In this paper, we propose a smoothing quasi-Newon method for solving general SOCCP. We show that the proposed method is well-defined without any additional assumption and has global convergence under standard conditions. Moreover, under the Jacobian nonsingularity assumption, the method is shown to have local superlinear or quadratic convergence rate. Our preliminary numerical experiments show the method could be very effective for solving SOCCPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alizadeh, F., Goldfarb, D.: Second-order cone optimization. Math. Program. 95, 3–51 (2003)

    Article  MathSciNet  Google Scholar 

  2. Chen, B., Ma, C.: A new smoothing Broyden-like method for solving nonlinear complementarity problem with a \(P_0\)-function. J. Glob. Optim. 51, 473–495 (2011)

    Article  Google Scholar 

  3. Chen, B., Ma, C.: Superlinear/quadratic smoothing Broyden-like method for the generalized nonlinear complementarity problem. Nonlinear Anal. Real World Appl. 12, 1250–1263 (2011)

    Article  MathSciNet  Google Scholar 

  4. Chen, J.-S., Tseng, P.: An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Math. Program. 104, 293–327 (2005)

    Article  MathSciNet  Google Scholar 

  5. Chen, J.-S., Pan, S.H.: A descent method for a reformulation of the second-order cone complementarity problem. J. Comput. Appl. Math. 213, 547–558 (2008)

    Article  MathSciNet  Google Scholar 

  6. Chen, J.-S., Pan, S.H.: A survey on SOC complementarity functions and solution methods for SOCPs and SOCCPs. Pac. J. Optim. 8, 33–74 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Chen, L.J., Ma, C.F.: A modified smoothing and regularized Newton method for monotone second-order cone complementarity problems. Comput. Math. Appl. 61, 1407–1418 (2011)

    Article  MathSciNet  Google Scholar 

  8. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983). Reprinted by SIAM, Philadelphia (1990)

  9. Chen, X.D., Sun, D., Sun, J.: Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems. Comput. Optim. Appl. 25, 39–56 (2003)

    Article  MathSciNet  Google Scholar 

  10. Dennis Jr., J.E., Moré, J.J.: Quasi-Newton methods: motivation and theory. SIAM Rev. 19, 46–89 (1977)

    Article  MathSciNet  Google Scholar 

  11. Dennis Jr., J.E., Moré, J.J.: A characterization of superlinear convergence and its applications to quasi-Newton methods. Math. Comput. 28, 549–560 (1974)

    Article  MathSciNet  Google Scholar 

  12. Dong, L., Tang, J.Y., Zhou, J.C.: A smoothing Newton algorithm for solving the monotone second-order cone complementarity problems. J. Appl. Math. Comput. 40, 45–61 (2012)

    Article  MathSciNet  Google Scholar 

  13. Fan, B.: A smoothing Broyden-like method with a nonmonotone derivative-free line search for nonlinear complementarity problems. J. Comput. Appl. Math. 290, 641–655 (2015)

    Article  MathSciNet  Google Scholar 

  14. Fukushima, M., Luo, Z., Tseng, P.: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim. 12, 436–460 (2002)

    Article  MathSciNet  Google Scholar 

  15. Facchinei, F.: Finite-Dimensional Variational Inequalities and Complementarity Problems, Vols. I and II. Springer, New York (2003)

    MATH  Google Scholar 

  16. Hayashi, S., Yamashita, N., Fukushima, M.: Robust Nash equilibria and second-order cone complementarity problems. J. Nonlear Conv. Anal. 2, 283–296 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim. 15, 593–615 (2005)

    Article  MathSciNet  Google Scholar 

  18. Huang, N., Ma, C.F.: A regularized smoothing Newton method for solving SOCCPs based on a new smoothing C-function. Appl. Math. Comput. 230, 315–329 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Li, D.H., Fukushima, M.: A derivative-free line search and global convergence of Broyden-like method for nonlinear equations. Optim. Methods Softw. 13(3), 181–201 (2000)

    Article  MathSciNet  Google Scholar 

  20. Li, D.H., Fukushima, M.: Globally convergent Broyden-like methods for semismooth equations and applications to VIP, NCP and MCP. Ann. Oper. Res. 103, 71–97 (2001)

    Article  MathSciNet  Google Scholar 

  21. Liu, L.X., Liu, S.Y., Wu, Y.: A smoothing Newton method for symmetric cone complementarity problem. J. Appl. Math. Comput. 47, 175–191 (2015)

    Article  MathSciNet  Google Scholar 

  22. Liu, L.X., Liu, S.Y., Wang, C.F.: Smoothing Newton methods for symmetric cones linear complementarity problem with the Cartesian \(P/P_0\)-property. J. Ind. Manag. Optim. 7, 53–66 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Liu, L.X., Liu, S.Y.: A smoothing Newton method for the Cartesian \(P_0\)-LCP over symmetric cones. Pac. J. Optim. 8, 261–272 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Liu, Y.J., Zhang, L.W., Liu, M.J.: Extension of smoothing functions to symmetric cones complementarity problems. Appl. Math. J. Chin. Univ. Ser. B. 22, 245–252 (2007)

    Article  MathSciNet  Google Scholar 

  25. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone optimization. Linear Algebra Appl. 284, 193–228 (1998)

    Article  MathSciNet  Google Scholar 

  26. Lu, N., Huang, Z.H.: A smoothing Newton algorithm for a class of non-monotonic symmetric cone linear complementarity problems. J. Optim. Theory Appl. 161, 446–464 (2014)

    Article  MathSciNet  Google Scholar 

  27. Ma, C.F., Chen, L., Wang, D.: A globally and superlinearly convergent smoothing Broyden-like method for solving nonlinear complementarity problem. Appl. Math. Comput. 198, 592–604 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Moré, J.J., Trangenstein, J.A.: On the global convergence of Broyden’s method. Math. Comput. 30(135), 523–540 (1976)

    Article  MathSciNet  Google Scholar 

  29. Pan, S.H., Chen, J.-S.: A damped Gauss-Newton method for the second-order cone complementarity problem. Appl. Math. Optim. 59, 293–318 (2009)

    Article  MathSciNet  Google Scholar 

  30. Pan, S.H., Chen, J.-S.: A regularization method for the second-order cone complementarity problems with Cartesian \(P_0\)-property. Nonlinear Anal Theor. 70, 1475–1491 (2009)

    Article  Google Scholar 

  31. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    Article  MathSciNet  Google Scholar 

  32. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18, 227–244 (1993)

    Article  MathSciNet  Google Scholar 

  33. Tang, J.Y., Dong, L., Zhou, J.C., Sun, L.: A smoothing-type algorithm for the second-order cone complementarity problem with a new nonmonotone line search. Optimization 64(9), 1935–1955 (2015)

    Article  MathSciNet  Google Scholar 

  34. Tang, J.Y., He, G.P., Dong, L., Fang, L., Zhou, J.C.: A smoothing Newton method for the second-order cone complementarity problem. Appl. Math. 58, 223–247 (2013)

    Article  MathSciNet  Google Scholar 

  35. Tang, J.Y., Zhou, J.C., Fang, L.: An improved smoothing algorithm based on a regularized CHKS smoothing function for the \(P_0\)-NCP over symmetric cones. Pac. J. Optim. 14(4), 635–657 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Tang, J., Ma, C.F.: A smoothing Newton method for symmetric cone complementarity problems. Optim. Lett. 9(2), 225–244 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper was partly supported by National Natural Science Foundation of China (11771255), Young Innovation Teams of Shandong Province (2019KJI013) and Nanhu Scholars Program for Young Scholars of Xinyang Normal University. The authors would like to thank two referees for their valuable suggestions that greatly improved the paper. Especially, we sincerely thank Dr. Bin Fan for his help on the numerical experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyong Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The proof of the result (c) given in Remark 4.1

Appendix: The proof of the result (c) given in Remark 4.1

We only need to prove that the result (c) holds when the SOCCP has Cartesian \(P_0\)-property. For any \(z=(\mu ,x)\in \mathbb {R}_{++}\times \mathbb {R}^n\), let \(\mathrm {d}x=(\mathrm {d}x_{1},\ldots ,\mathrm {d}x_{r})\in \mathbb {R}^{n_1}\times \cdots \times \mathbb {R}^{n_r}\) satisfy \({\Phi }'_{x}(z)\mathrm {d}x=0.\) Then, by (2.13) and (2.15), we have

$$\begin{aligned} (I_{n_i}-L_{w_i}^{-1}L_{x_i})\mathrm {d}x_i+(I_{n_i} -L_{w_i}^{-1}L_{F_i(x)})F_i'(x)\mathrm {d}x_i=0,~~~\forall ~i=1,\ldots ,r, \end{aligned}$$

i.e.,

$$\begin{aligned} (L_{w_i}-L_{x_i})\mathrm {d}x_i+(L_{w_i}-L_{F_i(x)}) F_i'(x)\mathrm {d}x_i=0,~~~\forall ~i=1,\ldots ,r. \end{aligned}$$
(7.1)

Since \(w_i^2-(x_i^2+F_i(x)^2)=2\mu ^2\mathrm {e}_i\succ _{\mathbb {K}^{n_i}}0,\) it follows from [14, Proposition 2.2] that

$$\begin{aligned}&L_{w_i}-L_{x_i}\succ 0,~~L_{w_i}-L_{F_i(x)}\succ 0, \end{aligned}$$
(7.2)
$$\begin{aligned}&(L_{w_i}-L_{x_i})(L_{w_i}-L_{F_i(x)})\succ 0,~~\forall ~i=1,\ldots ,r. \end{aligned}$$
(7.3)

So, by (7.1) and (7.2) we have

$$\begin{aligned} F_i'(x)\mathrm {d}x_i=-(L_{w_i}-L_{F_i(x)})^{-1} (L_{w_i}-L_{x_i})\mathrm {d}x_i,~~~\forall ~i=1,\ldots ,r. \end{aligned}$$
(7.4)

Now we suppose that \(\mathrm {d}x\ne 0\). Since F has the Cartesian \(P_0\)-property, \(F'\) has the Cartesian \(P_0\)-property. Hence, there exists an index \(v\in \{1,\ldots ,r\}\) such that

$$\begin{aligned} \mathrm {d}x_v\ne 0,~~~\mathrm {d}x_v^T(F'(x)\mathrm {d}x)_v\ge 0, \end{aligned}$$
(7.5)

which together with (7.4) give

$$\begin{aligned} \mathrm {d}x_v^T(L_{w_v}-L_{F_v(x)})^{-1}(L_{w_v}-L_{x_v})\mathrm {d}x_v\le 0. \end{aligned}$$
(7.6)

Let \({\overline{\mathrm {d}x_v}}:=(L_{w_v}-L_{F_v(x)})^{-1}\mathrm {d}x_v\). Then it follows from (7.3) that

$$\begin{aligned} \mathrm {d}x_v^T(L_{w_v}-L_{F_v(x)})^{-1}(L_{w_v}-L_{x_v})\mathrm {d}x_v=\overline{\mathrm {d}x_v}^T (L_{w_v}-L_{x_v})(L_{w_v}-L_{F_v(x)}){\overline{\mathrm {d}x_v}}^T\ge 0. \end{aligned}$$
(7.7)

By (7.6) and (7.7), we have

$$\begin{aligned} \overline{\mathrm {d}x_v}^T(L_{w_v}-L_{x_v}) (L_{w_v}-L_{F_v(x)}){\overline{\mathrm {d}x_v}}^T=0, \end{aligned}$$

which together with (7.3) give \(\overline{\mathrm {d}x_v}=0\) and hence \({\mathrm {d}x_v}=0\) This contradicts with \({\mathrm {d}x_v}\ne 0\) in (7.5). Thus, we have \(\mathrm {d}x=0\) and complete the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Zhou, J. A smoothing quasi-Newton method for solving general second-order cone complementarity problems. J Glob Optim 80, 415–438 (2021). https://doi.org/10.1007/s10898-020-00968-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-020-00968-y

Keywords

Navigation