Skip to main content
Log in

On the Search for Tight Frames of Low Coherence

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We introduce a projective Riesz s-kernel for the unit sphere \(\mathbb {S}^{d-1}\) and investigate properties of N-point energy minimizing configurations for such a kernel. We show that these configurations, for s and N sufficiently large, form frames that are well-separated (have low coherence) and are nearly tight. Our results suggest an algorithm for computing well-separated tight frames which is illustrated with numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Depending on the context, we either consider X to be a multiset, allowing for repetition, or as an ordered list.

  2. The chordal distance between the lines \(\ell (x)\) and \(\ell (y)\) is given by \(\min \{\Vert x-uy\Vert :u\in \mathbb {H}, |u|=1\}\).

References

  1. Bachoc, F., Ehler, M., Gräf, M.: Optimal configurations of lines and a statistical application. Adv. Comput. Math. 43(1), 113–126 (2017)

    Article  MathSciNet  Google Scholar 

  2. Benedetto, J., Fickus, M.: Finite normalized tight frames. Adv. Comput. Math. 18(2–4), 357–385 (2003)

    Article  MathSciNet  Google Scholar 

  3. Benedetto, J., Kolesar, J.D.: Geometric properties of Grassmannian frames for \({\mathbb{R}}^2\) and \({\mathbb{R}}^3\). EURASIP J Adv. Signal Process 1, 049850 (2006)

    Article  Google Scholar 

  4. Bétermin, L., Sandier, E.: Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere. Constr. Approx. 47(1), 39–74 (2018)

    Article  MathSciNet  Google Scholar 

  5. Bilyk, D., Glazyrin, A., Matzke, R., Park, J., Vlasiuk, O.: Optimal measures for p-frame energies on spheres. arXiv preprint arXiv:1908.00885 (2019)

  6. Bodmann, B.G., Haas, J.I.: Frame potentials and the geometry of frames. J. Fourier Anal. Appl. 21, 1344–1384 (2014)

    Article  MathSciNet  Google Scholar 

  7. Borodachov, S.V., Hardin, D.P., Saff, E.B.: Asymptotics for discrete weighted minimal Riesz energy problems on rectifiable sets. Trans. Am. Math. Soc. 360(3), 1559–1580 (2008)

    Article  MathSciNet  Google Scholar 

  8. Borodachov, S.V., Hardin, D.P., Saff, E.B.: Discrete Energy on Rectifiable Sets. Springer, New York (2019)

    Book  Google Scholar 

  9. Brauchart, J.S., Saff, E.B., Sloan, I.H., Womersley, R.S.: QMC designs: optimal order Quasi Monte Carlo integration schemes on the sphere. Math. Comput. 83(290), 2821–2851 (2014)

    Article  MathSciNet  Google Scholar 

  10. Brauchart, J.S., Reznikov, A.B., Saff, E.B., Sloan, I.H., Wang, Y.G., Womersley, R.S.: Random point sets on the sphere-hole radii, covering, and separation. Exp. Math. 27(1), 62–81 (2018)

    Article  MathSciNet  Google Scholar 

  11. Cahill, J., Mixon, D.G., Strawn, N.: Connectivity and irreducibility of algebraic varieties of finite unit norm tight frames. SIAM J. Appl. Algebra Geom. 1(1), 38–72 (2017)

    Article  MathSciNet  Google Scholar 

  12. Cai, T., Fan, J., Jiang, T.: Distributions of angles in random packing on spheres. J. Mach. Learn. Res. 14(1), 1837–1864 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Candes, E., Strohmer, T., Voroninski, V.: Phaselift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66(8), 1241–1274 (2013)

    Article  MathSciNet  Google Scholar 

  14. Casazza, P.G., Cahill, J., Haas, J.I., Tremain, J.: Constructions of biangular tight frames and their relationships with equiangular tight frames. arXiv preprint arXiv:1703.01786 (2017)

  15. Chen, X., Powell, A.M.: Random subspace actions and fusion frames. Constr. Approx. 43(1), 103–134 (2016)

    Article  MathSciNet  Google Scholar 

  16. Chen, X., Gonzalez, V., Goodman, E., Kang, S., Okoudjou, K.: Universal optimal configurations for the \(p\)-frame potentials. Adv. Comput. Math. 46, 4 (2020)

    Article  MathSciNet  Google Scholar 

  17. Choquet, G.: Diametre transfini et comparaison de diverses capacités. Sémin. Brelot Choquet Deny. Théorie Potentiel 3(4), 1–7 (1958)

    Google Scholar 

  18. Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20(1), 99–148 (2007)

    Article  MathSciNet  Google Scholar 

  19. Cohn, H., Kumar, A., Minton, G.: Optimal simplices and codes in projective spaces. Geom. Topol. 20(3), 1289–1357 (2016)

    Article  MathSciNet  Google Scholar 

  20. Conway, J.H., Hardin, R.H., Sloane, N.J.A.: Packing lines, planes, etc.: packings in Grassmannian spaces. Exp. Math. 5(2), 139–159 (1996)

    Article  MathSciNet  Google Scholar 

  21. Delsarte, P., Goethals, J.M., Seidel, J.J.: Bounds for systems of lines, and Jacobi polynomials. Geom. Comb. 30, 193–207 (1991)

    Google Scholar 

  22. Ehler, M.: Random tight frames. J. Fourier Anal. Appl. 18(1), 1–20 (2012)

    Article  MathSciNet  Google Scholar 

  23. Ehler, M., Okoudjou, K.: Minimization of the probabilistic p-frame potential. J. Stat. Plan. Inference 142(3), 645–659 (2012)

    Article  MathSciNet  Google Scholar 

  24. Fejes, L., Tóth, L.: On the sum of distances determined by a pointset. Acta Math. Hungar. 7(3–4), 397–401 (1956)

    MathSciNet  MATH  Google Scholar 

  25. Fickus, M., Mixon, D.G.: Tables of the existence of equiangular tight frames. arXiv preprint arXiv:1504.00253 (2015)

  26. Fickus, M., Jasper, J., Mixon, D.G.: Packings in real projective spaces. SIAM J Appl. Algebra Geom. 2(3), 377–409 (2018)

    Article  MathSciNet  Google Scholar 

  27. Goyal, V.K., Kovačević, J., Kelner, J.A.: Quantized frame expansions with erasures. Appl. Comput. Harmon. Anal. 10(3), 203–233 (2001)

    Article  MathSciNet  Google Scholar 

  28. Gross, D., Krahmer, F., Kueng, R.: A partial derandomization of phaselift using spherical designs. J. Fourier Anal. Appl. 21(2), 229–266 (2015)

    Article  MathSciNet  Google Scholar 

  29. Hamilton, L., Moitra, A.: The Paulsen problem made simple. In: Proceedings of the 10th Annual Innovations in Theoretical Computer Science (ITCS 2019)

  30. Hardin, D.P., Saff, E.B., Whitehouse, J.T.: Quasi-uniformity of minimal weighted energy points on compact metric spaces. J. Complex. 28(2), 177–191 (2012)

    Article  MathSciNet  Google Scholar 

  31. Hardin, D.P., Leblé, T., Saff, E.B., Serfaty, S.: Large deviation principles for hypersingular Riesz gases. Constr. Approx. 48(1), 61–100 (2018)

    Article  MathSciNet  Google Scholar 

  32. Holmes, R.B., Paulsen, V.I.: Optimal frames for erasures. Linear Algebra Appl. 377, 31–51 (2004)

    Article  MathSciNet  Google Scholar 

  33. Kuijlaars, A.B.J., Saff, E.B.: Asymptotics for minimal discrete energy on the sphere. Trans. Am. Math. Soc. 350(2), 523–538 (1998)

    Article  MathSciNet  Google Scholar 

  34. Landkof, N.S.: Foundations of Modern Potential Theory. Springer, New York (1972)

    Book  Google Scholar 

  35. Lee, J.M.: Introduction to Smooth Manifolds, pp. 1–29. Springer, New York (2003)

    Book  Google Scholar 

  36. Levenshtein, V.I.: Designs as maximum codes in polynomial metric spaces. Acta Appl. Math. 29(1–2), 1–82 (1992)

    Article  MathSciNet  Google Scholar 

  37. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, vol. 44. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  38. Schwartz, R.E.: Five point energy minimization: a synopsis. Constr. Approx. 51, 537–564 (2020)

    Article  MathSciNet  Google Scholar 

  39. Strohmer, T., Heath Jr., R.W.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14(3), 257–275 (2003)

    Article  MathSciNet  Google Scholar 

  40. Sustik, M.A., Tropp, J.A., Dhillon, I.S., Heath Jr., R.W.: On the existence of equiangular tight frames. Linear Algebra Appl. 426(2–3), 619–635 (2007)

    Article  MathSciNet  Google Scholar 

  41. Welch, L.: Lower bounds on the maximum cross correlation of signals (Corresp). IEEE Trans. Inform. Theory 20(3), 397–399 (1974)

    Article  Google Scholar 

  42. Zhou, Z., Ding, C., Li, N.: New families of codebooks achieving the Levenstein bound. IEEE Trans. Inform. Theory 60(11), 7382–7387 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Chen.

Additional information

Communicated by Pete Casazza.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

X. Chen: The research of this author was supported by the U. S. National Science Foundation under Grant DMS-1908880. D. P. Hardin and E. B. Saff: The research of these authors was supported, in part, by the U. S. National Science Foundation under Grant DMS-1516400.

Appendix A

Appendix A

1.1 Uniform Measure

Given the hypersphere \(\mathbb {S}^{d-1}\), let \(C_r(x)\) be the hyperspherical cap centered at x, with r being the Euclidean distance of the furthest point to x. That is,

$$\begin{aligned} C_r(x)=\{y\in \mathbb {S}^{d-1}: \Vert x-y\Vert \le r\}. \end{aligned}$$

Recalling that \(\sigma _{d-1}\) denotes the normalized surface measure, the following asymptotic formula holds:

$$\begin{aligned} \sigma _{d-1}(C_r(x))=\frac{1}{d-1}\gamma _d r^{d-1}+\mathcal {O}(r^{d+1}),\qquad (r\rightarrow 0), \end{aligned}$$
(A.1)

and also the estimate

$$\begin{aligned} \sigma _{d-1}(C_r(x))\le \frac{1}{d-1}\gamma _d r^{d-1}, \end{aligned}$$
(A.2)

where

$$\begin{aligned} \gamma _d:=\frac{\Gamma (d/2)}{\Gamma ((d-1)/2)\Gamma (1/2)}. \end{aligned}$$
(A.3)

Both estimates can be found in Sect. 3 of [33].

Fig. 7
figure 7

\(F^{-1}(B(p_x,r))\)

Lemma A.1

When \({\mathbb {H}}={\mathbb {R}}\), the uniform measure on \({\mathcal {D}}\) is \((d-1)\)-regular. Moreover, we have the estimate

$$\begin{aligned} \Phi (\sigma _{d-1})(B(p_x,r))\le \frac{2}{d-1}\gamma _dr^{d-1},\quad \text { for any }p_x\in {\mathcal {D}}, 0<r\le diam({\mathcal {D}}) \end{aligned}$$
(A.4)

Proof

\({\mathcal {D}}\) is the projective space embeded in \({\mathbb {R}}{\mathbb {M}}_{d\times d}^h\). \(p_x\) and \(p_y\) are furthest away if \(x\perp y\), so \(\text {diam}({\mathcal {D}})=\sqrt{2}\).

For any point \(p_x=F(x)\in {\mathcal {D}}\) and any \(r\le \text {diam}({\mathcal {D}})=\sqrt{2}\), suppose in the set \(B(p_x,r)\cap {\mathcal {D}}\), \(p_y\) is the point that is furthest away from \(p_x\). We can pick y so that \(\langle x,y\rangle \ge 0\). Then \(\Phi ^{-1}(B(p_x,r))\) is the union of the spherical cap centered at x with boundary point y together with its antipodal image, see Fig. 7. By (3.3),

$$\begin{aligned} |\langle x,y\rangle |^2= & {} 1-\Vert p_x-p_y\Vert ^2/2\ge 1-r^2/2,\\ ||x-y||^2= & {} 2-2\langle x,y\rangle \le 2-2\sqrt{1-r^2/2}\le 2-2(1-r^2/2)=r^2. \end{aligned}$$

By (A.2),

$$\begin{aligned} \Phi (\sigma _{d-1})(B(p_x,r))=\sigma _{d-1}(\Phi ^{-1}(B(x,r)))=2\sigma _{d-1}(C_r(x))\le \frac{2}{d-1}\gamma _dr^{d-1}. \end{aligned}$$

\(\square \)

1.2 Expected Value of Coherence

Let \(X=\{x_i\}\in {\mathcal {S}}(d,N)\) be a random configuration on the sphere where each point is selected from a uniform distribution on the sphere. Let \(\Theta =\min _{i\ne j}\arccos \langle x_i,x_j\rangle \), so

$$\begin{aligned} \xi (X)=\max _{i\ne j}|\langle x_i,x_j\rangle |\ge \max _{i\ne j}\langle x_i,x_j\rangle =\cos \Theta \ge 1-\Theta ^2/2. \end{aligned}$$
(A.5)

It is proven in [12, Theorem 2] that \(F_N(t):=\Pr (N^{2/(d-1)}\Theta \le t)\rightarrow F(t)\) where \(F(t)=1-\exp \Big (-\frac{\gamma _d}{2(d-1)}t^{d-1}\Big )\) is supported on \((0,\infty )\).

In order to compute the expected value of \(\Theta ^2\), we define \(G_N(s):=\Pr (N^{4/(d-1)}\Theta ^2\le s)=F_N(\sqrt{s})\rightarrow F(\sqrt{s})\). By a similar argument as the one in [10, Corollary 3.4], we get

$$\begin{aligned} \lim _{N\rightarrow \infty }{\mathbb {E}}(N^{4/(d-1)}\Theta ^2)&=\lim _{N\rightarrow \infty }\int _0^{\infty }(1-G_N(s))ds\\&=\int _0^{\infty }1-F(\sqrt{s})ds=\int _0^{\infty }\exp \Big (-\frac{1}{2}\kappa _{d}s^{\frac{d-1}{2}}\Big ):=C_d \end{aligned}$$

By (A.5), we have

$$\begin{aligned}{\mathbb {E}}(\xi (X))\ge {\mathbb {E}}(1-\Theta ^2/2)\sim 1-\frac{C_d}{2}N^{-\frac{4}{d-1}}.\end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Hardin, D.P. & Saff, E.B. On the Search for Tight Frames of Low Coherence. J Fourier Anal Appl 27, 2 (2021). https://doi.org/10.1007/s00041-020-09790-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-020-09790-2

Keywords

Mathematics Subject Classification

Navigation