Skip to main content
Log in

Influence of hydrogen and cerium dopant on structural, optical, and magnetic properties of anatase nanoparticles

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Cerium-incorporated TiO2 nano-composite powders were fabricated by a facile procedure included co-decomposition of the required chemical complexes. The structures of the synthesized composites were investigated by the X-ray diffraction (XRD) technique through Rietveld refinement method, which confirmed the formation of almost single anatase (A) phase. The formed tiny rutile (R) and Titania (B) phases were vanished with Ce doping and hydrogenation. The optical band-gap was red-shifted with Ce doping and blue-shifted with the hydrogenation. The results confirmed that the hydrogenation process was vital to create ferromagnetic (FM) properties in Ce-incorporated TiO2. A saturation magnetization of ~0.18 emu/cm3 was measured for the hydrogenated ~10 at% Ce sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A:

Anatase phase

B:

Titania B-phases

BGN:

Band-gap narrowing

CBs:

Crystallite boundaries

CS:

Crystallite size

CF:

Crystallites surfaces

DRS:

Diffuse reflectance spectroscopy

DMS:

Dilute magnetic semiconductor

ECM:

Electronic crystalline medium

E g :

Band-gap energy

FM:

Ferromagnetic

Hc :

Coercive force

K-M:

Kubelka-Munk equation

Mr :

Remanence

Ms :

Saturation magnetization

M. B:

Moss-Burstein

PM:

Paramagnetic

R:

Rutile phase

RT-FM:

Room-temperature ferromagnetism,

Rb:

Brookite phase

SSS:

Substitutional solid solution

TM:

Transition-metal

VOs:

Oxygen vacancies

VSM:

Vibrating sample magnetometer

W-H:

Williamson-Hall

XRD:

X-ray diffraction

λg :

Absorption threshold wavelength

μ:

Εffective magnetic moment

χ(vol) :

Volume susceptibility

References

  1. J. Tian, H. Gao, H. Deng, L. Sun, H. Kong, P. Yang, J. Chu, Structural, magnetic and optical properties of Ni-doped TiO2 thin films deposited on silicon (100) substrates by sol–gel process. J. Alloys Compd. 581, 318–323 (2013)

    Article  CAS  Google Scholar 

  2. R. Marchand, L. Brohan, M. Tournoux, TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17. Mater. Res. Bull. 15(8), 1129–1133 (1980). https://doi.org/10.1016/0025-5408(80)90076-8

    Article  CAS  Google Scholar 

  3. J. Dong, J. Han, Y. Liu, A. Nakajima, S. Matsushita, S. Wei, W. Gao, Defective black TiOTiO2 synthesized via anodization for visible-light photocatalysis. Appl. Mater. Interfaces 6, 1385–1388 (2014)

    Article  CAS  Google Scholar 

  4. A.G. Rana, W. Ahmad, A. Al-Matar, R. Shawabke, Z. Aslam, Synthesis and characterization of Cu–Zn/TiO2 for the photocatalytic conversion of CO2 to methane. Environ. Technol. 38(9), 1085–1092 (2017)

    Article  CAS  Google Scholar 

  5. D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J. Mater. Chem. 14(22), 3370–3377 (2004)

    Article  CAS  Google Scholar 

  6. J. Tian, Y. Leng, H. Cui, H. Liu, Hydrogenated TiO2 nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst. J. Hazard. Mater. 299, 165–173 (2015)

    Article  CAS  Google Scholar 

  7. A. Ghicov, J.M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, P. Schmuki, Ion implantation and annealing for an efficient N-Doping of TiO2 nanotubes. Nano Lett. 6, 1080–1082 (2006)

    Article  CAS  Google Scholar 

  8. L. Sun, J. Li, C.L. Wang, S.F. Li, H.B. Chen, C.J. Lin, An electrochemical strategy of doping Fe3+ into TiO2 nanotube array films for enhancement in photocatalytic activity. Sol. Energy Mater. Sol. Cells 93(10), 1875–1880 (2009)

    Article  CAS  Google Scholar 

  9. G.L. Chiarello, M.H. Aguirre, E. Selli, Hydrogen production by photocatalytic steam forming of methanol on noble metal-modified TiO2. J. Catal. 273(2), 182–190 (2010)

    Article  CAS  Google Scholar 

  10. Y. Zhang, H. Ma, M. Yi, Z. Shen, X. Yu, X. Zhang, Magnetron-sputtering fabrication of noble metal nanodots coated TiO2 nanoparticles with enhanced photocatalytic performance. Mater. Des. 125, 94–99 (2017)

    Article  CAS  Google Scholar 

  11. A.M.T. Silva, C.G. Silva, G. Drazic, J.L. Faria, Ce-doped TiO2 for photocatalytic degradation of chlorophenol. Catal. Today 144, 13–18 (2009)

    Article  CAS  Google Scholar 

  12. J.Y. Lee, J.-H. Choi, Sonochemical synthesis of Ce-doped TiO2 nanostructure: a visible-light-driven photocatalyst for degradation of Toluene and O-Xylene. Materials 16, 1386 (2019). https://doi.org/10.3390/ijerph16081386

    Article  CAS  Google Scholar 

  13. A. Jafari, S. Khademi, M. Farahmandjou, Nano-crystalline Ce-doped TiO2 powders: Sol-gel synthesis and optoelectronic properties. Mater. Res. Express 5(9), 095008 (2018)

    Article  Google Scholar 

  14. J. Dhanalakshmi, S. Iyyapushpam, S.T. Nishanthi, M. Malligavathy, D.P. Padiyan, Investigation of oxygen vacancies in Ce coupled TiO2 nanocomposites by Raman and PL spectra. Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 015015 (2017) (10pp)

    Article  Google Scholar 

  15. Y. Xu, C. Zhang, L. Zhang, X. Zhang, H. Yao, J. Shi, Pd-catalyzed instant hydrogenation of TiO 2 with enhanced photocatalytic performance. Energy Environ. Sci. 9(7), 2410–2417 (2016)

    Article  CAS  Google Scholar 

  16. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107(7), 2891–2959 (2007)

    Article  CAS  Google Scholar 

  17. U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48(5-8), 53–229 (2003)

    Article  CAS  Google Scholar 

  18. M. El-Hilo, A.A. Dakhel, Z.J. Yacoob, Magnetic interactions in Co2+ doped ZnO synthesized by co-precipitation method: Efficient effect of hydrogenation on the long-range ferromagnetic order. J. Magn. Magn. Mater. 482, 125–134 (2019)

    Article  CAS  Google Scholar 

  19. B. Abdelhamid, G. Schmerber, D. Ihiawakrim, A. Derory, Structural, optical, and magnetic properties of polycrystalline Co-doped TiO2 synthesized by solid-state method. Mater. Sci. Eng. B 177, 1618–1622 (2012)

    Article  Google Scholar 

  20. H.P. Quiroz, A.D. Cuenca, Synthesis temperature dependence on magnetic properties of cobalt doped TiO2 thin films for spintronic applications. Appl. Surf. Sci. 484(2–19), 688–691 (2019)

    Article  CAS  Google Scholar 

  21. C. Jayachandraiah, G. Krishnaiah, Influence of cerium dopant on magnetic and dielectric properties of ZnO nanoparticles. J. Mater. Sci. 52(12), 7058–7066 (2017)

    Article  CAS  Google Scholar 

  22. L. Gigliola, C. Barani, F. Giubertoni, G. Paganelli, Synthesis and characterization of TiO2 nanoparticles for the reduction of water pollutants. Materials-MDPI 10, 1208 (2017) (11 pages)

    Google Scholar 

  23. J.D. Hanawalt, H.W. Rinn, L.K. Frevel, Chemical analysis by X-ray diffraction. Ind. Eng. Anal. Chem. 10, 475–512 (1938)

    Article  Google Scholar 

  24. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996), p. 425

    Google Scholar 

  25. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32(5), 751–767 (1976)

    Article  Google Scholar 

  26. L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louer, P. Scardi, Rietveld refinement guidelines. J. Appl. Crystallogr. 32(1), 36–50 (1999)

    Article  CAS  Google Scholar 

  27. A. Khorsand Zak, W.H. Abd Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci. 13(1), 251–256 (2011)

    Article  CAS  Google Scholar 

  28. P. Kubelka, F. Munk, Ein Beitrag Zur Optik Der Farbanstriche. Z. Tech. Physik 12, 593–601 (1931)

    Google Scholar 

  29. D. Fernández-Torre, J. Carrasco, M.V. Ganduglia-Pirovano, R. Pérez, Hydrogen activation, diffusion, and clustering on CeO2(111): A DFT+U study. J. Chem. Phys. 141, 014703 (2014)

    Article  Google Scholar 

  30. R. Del Angel, J.C. Durán-Álvarez, R. Zanella, TiO2-Low band gap semiconductor heterostructures for water treatment using sunlight-driven photocatalysis, titanium dioxide - material for a sustainable environment, Dongfang Yang. IntechOpen (2018). https://doi.org/10.5772/intechopen.76501. Available from: https://www.intechopen.com/books/titanium-dioxide-material-for-a-sustainable-environment/TiO2-low-band-gap-semiconductor-heterostructures-for-water- treatment-using-sunlight-driven-photocata

  31. S. Ahmad, W. Khan, A. Raushan, Synthesis and characterization of Ni doped TiO2 Nanoparticles by sol-gel method, conference: international conference on advanced materials for power engineering at: MGU, Kottayam Kerala, India (2015)

  32. D.A.H. Hanaor, M.H.N. Assadi, S. Li, A. Yu, C.C. Sorrell, Ab initio study of phase stability in doped TiO2. Comput. Mech. 50, 185–194 (2012)

    Article  Google Scholar 

  33. H. Wang, J. Wei, R. Xiong, J. Shi, Enhanced ferromagnetic properties of Fe+N codoped TiO2 anatase. J. Magn. Magn. Mater. 324(13), 2057–2061 (2012)

    Article  CAS  Google Scholar 

  34. A. Kumar, M.K. Kashyap, N. Sabharwal, S. Kumar, A. Kumar, P. Kumar, K. Asokan, Structural, optical and weak magnetic properties of Co and Mn codoped TiO2 nanoparticles. Solid State Sci. 73, 19–26 (2017)

    Article  CAS  Google Scholar 

  35. S. Zhou, E. Cizmar, K. Potzger, M. Krause, G. Talut, M. Helm, J. Fassbender, S.A. Zvyagin, J. Wosnitza, H. Schmidt, Origin of magnetic moments in defective single crystals. Phys. Rev. B 79(11), 113201 (4 pages) (2009)

    Article  Google Scholar 

  36. R.L. Carlin, in Magnetochemistry. The rare earths or lanthanides (Springer, Berlin, 1986), pp. 237–261

    Chapter  Google Scholar 

  37. J. Fikacek, J. Prokleska, J. Prchal, J. Custers, V. Sechovsky, Nature of the magnetic ground state in the mixed valence compound CeRuSn: a single-crystal study. J. Phys. Condens. Matter 25, 416006 (2013) (6pp)

    Article  CAS  Google Scholar 

  38. S.-J. Cheng, Magnetic response of magnetic ion-doped nanocrystals: Effects of single Mn2+ impurity. Phys. Rev. B 72(23), 235332 (2005)

    Article  Google Scholar 

  39. F. Tolea, M.N. Grecu, V. Kuncser, S.G. Constantinescu, D. Ghica, On the role of Fe ions on magnetic properties of doped TiO2 nanoparticles. Appl. Phys. Lett. 106, 142404 (2015)

    Article  Google Scholar 

  40. M. Yeganeh, N. Shahtahmasebi, A. Kompany, M. Karimipour, F. Razavi, N.H.S. Nasralla, L. Siller, The magnetic characterization of Fe doped TiO2 semiconducting oxide nanoparticles synthesized by sol-gel method. Physica B 511, 89–98 (2017)

    Article  CAS  Google Scholar 

  41. Z.N. Kayani, M.S. Riaz, S. Naseem, Magnetic and antibacterial studies of sol-gel dip coated Ce doped TiO2 thin films: Influence of Ce contents. Ceram. Int. 46, 381–390 (2020). https://doi.org/10.1016/j.ceramint.2019.08.272

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Dakhel.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakhel, A.A. Influence of hydrogen and cerium dopant on structural, optical, and magnetic properties of anatase nanoparticles. J Electroceram 45, 22–28 (2020). https://doi.org/10.1007/s10832-020-00221-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-020-00221-8

Keywords

Navigation