Skip to main content
Log in

A Review of Slag Refining of Crude Silicon

  • Silicon Production, Refining, Properties, and Photovoltaics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Metallurgical refining of crude silicon for low-cost, mass production of solar silicon has been studied extensively over the past two decades. One of the methods attempted to target the deleterious impurities of Si is slag refining, where liquid Si or its alloys are treated with a flux. This article presents an overview of the impurity response to various slag treatment conditions for crude Si metal from both fundamental and practical perspectives, aiming to provide a basis for the design and application of more effective fluxes and alloys. It was found that removal of B and P through slag refining alone is not practical on an industrial scale as it would require a large volume of slag, however the removal percentage can be significantly increased if the silicon has been alloyed with a suitable metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Kawamura, Y. Yanaba, T. Yoshikawa, and K. Morita, Mater. Sci. Forum 750, 284 (2013).

    Google Scholar 

  2. M.D. Johnston and M. Barati, J. Non-cryst. Solids 357, 970 (2011).

    Google Scholar 

  3. J. Safarian and M. Tangstad, Metall. Mater. Trans. B 43, 1427 (2012).

    Google Scholar 

  4. H. Lu, K. Wei, W. Ma, K. Xie, J. Wu, and Y.U.N. Lei, Metall. Mater. Trans. B 48, 2768 (2017).

    Google Scholar 

  5. R.K. Galgali, B.C. Mohanty, J.L. Gumaste, U. Syamaprasad, B.B. Nayak, S.K. Singh, and P.K. Jena, Sol. Energy Mater. 16, 297 (1987).

    Google Scholar 

  6. L.K. Jakobsson and M. Tangstad, Metall. Mater. Trans. B 45, 1644 (2014).

    Google Scholar 

  7. J. Safarian, G. Tranell, and M. Tangstad, Metall. Mater. Trans. B 44, 571 (2013).

    Google Scholar 

  8. J.F. White, C. Allertz, and S. Du, Int. J. Mater. Res. 104, 229 (2013).

    Google Scholar 

  9. J. Cai, J.T. Li, W.H. Chen, C. Chen, and X.T. Luo, Trans. Nonferrous Met. Soc. China 21, 1402 (2011).

    Google Scholar 

  10. J.F. White and D. Sichen, Metall. Mater. Trans. B 45, 96 (2014).

    Google Scholar 

  11. T. Weiss and K. Schwerdtfeger, Metall. Mater. Trans. B 25, 497 (1994).

    Google Scholar 

  12. S.W. Jones, J. Appl. Phys. 38, 3475 (2000).

    Google Scholar 

  13. M.S. Islam and M.A. Rhamdhani, Metall. Mater. Trans. B 49, 3171 (2018).

    Google Scholar 

  14. E. Krystad, K.A.I. Tang, and G. Tranell, JOM 64, 968 (2012).

    Google Scholar 

  15. H. Cheng, S. Zheng, and C. Chen, JOM 71, 2120 (2019).

    Google Scholar 

  16. VDEh, Slag Atlas, 2nd ed. (Verlag Stahleisen, 1995).

  17. T. R. Dulski, ASTM Int. (1996).

  18. M.D. Johnston and M. Barati, Sol. Energy Mater. Sol. Cells 94, 2085 (2010).

    Google Scholar 

  19. K. Suzuki and N. Sano, in 10th Eur. Photovolt. Sol. Energy Conf. (1991), pp. 273–275.

  20. J. Wu, Y. Li, W. Ma, K. Wei, B. Yang, and Y. Dai, Trans. Nonferrous Met. Soc. China 24, 1231 (2014).

    Google Scholar 

  21. K.X. Wei, H.F. Lu, W.H. Ma, Y.L. Li, Z. Ding, J.J. Wu, and Y.N. Dai, Rare Met. 34, 522 (2015).

    Google Scholar 

  22. D. Luo, N. Liu, Y. Lu, G. Zhang, and T. Li, Trans. Nonferrous Met. Soc. China 21, 1178 (2011).

    Google Scholar 

  23. L.A.V. Teixeira, Y. Tokuda, T. Yoko, and K. Morita, ISIJ Int. 49, 777 (2009).

    Google Scholar 

  24. L.A.V. Teixeira and K. Morita, ISIJ Int. 49, 783 (2009).

    Google Scholar 

  25. X. Ma, T. Yoshikawa, and K. Morita, Metall. Mater. Trans. B 44, 528 (2013).

    Google Scholar 

  26. L. Zhang, Y. Tan, J. Li, Y. Liu, and D. Wang, Mater. Sci. Semicond. Process. 16, 1645 (2013).

    Google Scholar 

  27. H. Cheng, S. Zheng, and C. Chen, Sep. Purif. Technol. 201, 60 (2018).

    Google Scholar 

  28. Z. Ding, W. Ma, K. Wei, J. Wu, Y. Zhou, and K. Xie, J. Non-Cryst. Solids 358, 2708 (2012).

    Google Scholar 

  29. H. Lai, L. Huang, C. Lu, M. Fang, W. Ma, P. Xing, J. Li, and X. Luo, JOM 68, 2371 (2015).

    Google Scholar 

  30. J. Safarian, Silicon 11, 437 (2019).

    Google Scholar 

  31. J. Safarian, G. Tranell, and M. Tangstad, Metall. Mater. Trans. E 2, 109 (2015).

    Google Scholar 

  32. M. Tanahashi, Y. Shinpo, T. Fujisawa, and C. Yamauchi, Shigen-to-Sozai 118, 497 (2002).

    Google Scholar 

  33. L. Huang, J. Chen, M. Fang, S. Thomas, A. Danaei, X. Luo, and M. Barati, J. Clean. Prod. 186, 718 (2018).

    Google Scholar 

  34. Y. Changhao, H. Bingfeng, and H. Xinming, J. Semicond. 32, 092003 (2011).

    Google Scholar 

  35. P. Li, K. Wang, M. Fang, L. Zhang, D. Jiang, and J. Li, Sep. Sci. Technol. 53, 2144 (2018).

    Google Scholar 

  36. H. Nishimoto, Y. Kang, T. Yoshikawa, and K. Morita, High Temp. Mater. Process. 31, 471 (2012).

    Google Scholar 

  37. M. Tanahashi, T. Fujisawa, and C. Yamauchi, Metall. Mater. Trans. B 45, 629 (2014).

    Google Scholar 

  38. Y. Wang, X. Ma, and K. Morita, Metall. Mater. Trans. B 45, 334 (2014).

    Google Scholar 

  39. J. Wu, Y. Zhou, W. Ma, M. Xu, and B. Yang, Metall. Mater. Trans. B 48, 22 (2017).

    Google Scholar 

  40. Z. Xia, J. Wu, W. Ma, Y. Lei, K. Wei, and Y. Dai, Sep. Purif. Technol. 187, 25 (2017).

    Google Scholar 

  41. Y. Li, J. Wu, and W. Ma, Sep. Sci. Technol. 49, 1946 (2014).

    Google Scholar 

  42. H. Fujiwara, L.J. Yuan, K. Miyata, E. Ichise, and R. Otsuka, Nippon Kinzoku Gakkaishi. J. Jpn. Inst. Met. 60, 65 (1996).

    Google Scholar 

  43. H. Fujiwara, J.Y. Liang, K. Takeuchi, and E. Ichise, Mater. Trans. 37, 923 (1996).

    Google Scholar 

  44. J. Wu, W. Ma, B. Yang, D. Liu, and Y. Dai, J. Iron. Steel Res. Int. 19, 779 (2012).

    Google Scholar 

  45. J.J. Wu, K. Liu, M. Xu, B. Yang, and Y.N. Dai, J. Min. Metall. Sect. B Metall. 50, 83 (2014).

    Google Scholar 

  46. Y. Li, J. Wu, W. Ma, and B. Yang, Silicon 7, 247 (2015).

    Google Scholar 

  47. F. Wang, J. Wu, W. Ma, M. Xu, Y. Lei, and B. Yang, Sep. Purif. Technol. 170, 248 (2016).

    Google Scholar 

  48. J. Wu, F. Wang, W. Ma, Y.U.N. Lei, and B.I.N. Yang, Metall. Mater. Trans. B 47, 1796 (2016).

    Google Scholar 

  49. Y. Hu, D. Lu, L. Tao, L. Yu, W. Bo, G. Changjuan, Y. Sun, H. Chen, and Q. Li, Adv. Mater. Res. 156–157, 882 (2011).

    Google Scholar 

  50. Y.V. Meteleva-Fischer, Y. Yang, R. Boom, B. Kraaijveld, and H. Kuntzel, Miner. Met. Mater. Soc. 463, 229 (2012).

    Google Scholar 

Download references

Funding

This study was funded by MITACS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sridevi Thomas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, S., Huang, L. & Barati, M. A Review of Slag Refining of Crude Silicon. JOM 73, 260–281 (2021). https://doi.org/10.1007/s11837-020-04470-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04470-4

Navigation