Skip to main content

Advertisement

Log in

Improved Quinoa Growth, Physiological Response, and Yield by Hydropriming Under Drought Stress Conditions

Wachstum, physiologische Reaktion und Ertrag von Quinoa unter Trockenstressbedingungen durch Hydropriming verbessert

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Quinoa is a traditional Andean seed crop highly tolerant to abiotic stresses. Since most seed crops cultivars are sensitive to drought stress, quinoa is considered as a valuable candidate for severe environmental conditions to which the plant is exposed. In this study we focused on the impact of hydropriming on drought tolerance in three quinoa cultivars (Q26, Q29 and Titicaca) in two arid regions of Iran. We observed that, under field conditions, quinoa responded to drought stress with a significant decrease in growth, yield component, seed yield and biochemical traits including photosynthetic pigments and relative water contents. In contrast, malondialdehyde, electrolyte leakage and proline concentration in all quinoa cultivars in both regions increased. However, seed priming significantly improved growth and seed yield. The results of the correlation analysis revealed that seed yield was highly positively related to pigments and proline concentration. Therefore, it could be suggested that these traits are efficient and reliable indicators for indirect selection of tolerant quinoa cultivars under drought stress conditions. In general, Q26 and Q29 were considered as superior cultivars for well-watered conditions and Titicaca cultivar was found relatively more drought tolerant than other cultivars. This study may contribute to the understanding of seed priming could be applied as an efficient approach to ameliorate the adverse effects of drought stress in quinoa cultivars.

Zusammenfassung

Quinoa ist eine traditionelle Saatgutpflanze der Anden, die sehr tolerant gegenüber abiotischem Stress ist. Da die meisten Saatgutsorten empfindlich auf Trockenstress reagieren, gilt Quinoa als wertvoller Kandidat für schwere Umweltbedingungen, denen die Pflanze ausgesetzt ist. In dieser Studie konzentrierten wir uns auf die Auswirkungen von Hydropriming auf die Trockentoleranz bei drei Quinoa-Sorten (Q26, Q29 und Titicaca) in zwei Trockengebieten des Irans. Wir beobachteten, dass Quinoa unter Feldbedingungen auf Trockenstress mit einer signifikanten Abnahme des Wachstums, der Ertragskomponente, des Saatgutertrags und der biochemischen Merkmale einschließlich der photosynthetischen Pigmente und des relativen Wassergehalts reagierte. Im Gegensatz dazu nahmen Malondialdehyd, Elektrolytaustritt und Prolin-Konzentration in allen Quinoa-Sorten in beiden Regionen zu. Allerdings verbesserte die Saatgutvorbereitung das Wachstum und den Samenertrag signifikant. Die Ergebnisse der Korrelationsanalyse zeigten, dass der Samenertrag in hohem Maße positiv mit den Pigmenten und der Prolin-Konzentration korreliert war. Daher könnte man vermuten, dass diese Merkmale effiziente und zuverlässige Indikatoren für die indirekte Selektion toleranter Quinoa-Sorten unter Trockenstressbedingungen sind. Im Allgemeinen wurden Q26 und Q29 als überlegene Sorten für gut bewässerte Bedingungen bewertet und die Sorte Titicaca wurde für trockenheitstoleranter als andere Sorten befunden. Diese Studie könnte zum Verständnis der Saatgutvorbereitung beitragen, die als effizienter Ansatz zur Minderung der nachteiligen Auswirkungen von Trockenstress bei Quinoa-Sorten angewandt werden könnte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Coordinates 36°27′56″N, 54°58′58″E and 1436 m s.l.

  2. Coordinates 36°09′14″N, 54°24′18″E and 1130 m s.l.

References

  • Abdel-Aziz HMM, Hasaneen MNA, Omer AM (2019) Impact of engineered nanomaterials either alone or loaded with NPK on growth and productivity of French bean plants: Seed priming vs foliar application. S Afr J Bot 125:102–108

    CAS  Google Scholar 

  • Abdolshahi R, Nazari M, Safarian A, Sadathossini TS, Salarpour M, Amiri H (2015) Integrated selection criteria for drought tolerance in wheat (Triticum aestivum L.) breeding programs using discriminant analysis. Field Crop Res 174:20–29. https://doi.org/10.1016/j.fcr.2015.01.009

    Article  Google Scholar 

  • Ahmadi SH, Solgi S, Sepaskhah AR (2019) Quinoa: a super or pseudo-super crop? Evidences from evapotranspiration, root growth, crop coefficients, and water productivity in a hot and semi-arid area under three planting densities. Agric Water Manag. https://doi.org/10.1016/j.agwat.2019.105784

    Article  Google Scholar 

  • Ajouri A, Asgedom H, Becker M (2004) Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. J Plant Nutr Soil Sci 167:630–636

    Google Scholar 

  • Amira MS, Qados A (2014) Effect of ascorbic acid antioxidant on soybean (Glycine max L.) plants grown under water stress conditions. Int J Adv Res Biol Sci 1:189–205

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    CAS  Google Scholar 

  • Askari A, Ardakani MR, Paknejad F, Hosseini Y (2019) Effects of mycorrhizal symbiosis and seed priming on yield and water use efficiency of sesame under drought stress condition. Sci Hortic. https://doi.org/10.1016/j.scienta.2019.108749

    Article  Google Scholar 

  • Aziz A, Akram NA, Ashraf M (2018) Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa Willd.) plants under water deficit regimes. Plant Physiol Bioch 123:192–203

    CAS  Google Scholar 

  • Bates LS, Waldren RP, Teari D (1973) Rapid determination of free proline for water stress studies. Plant Soil 39(1):205–207

    CAS  Google Scholar 

  • Damalas C, Koutroubas D, Fotiadis (2019) Hydro-priming effects on seed germination and field performance of Faba bean in spring sowing. Agriculture 9:201. https://doi.org/10.3390/agriculture9090201

    Article  CAS  Google Scholar 

  • Daur I (2018) Effects of hydro and hormonal priming on quinoa (Chenopodium quinoa willd.) seed germination under salt and drought stress. PAKJBOT 50:1669–1673

    CAS  Google Scholar 

  • Devos C, Schat H, De waal M, Wooijs R, Ernst W (1991) Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiol Plant 82(4):523–528

    CAS  Google Scholar 

  • Dhanya-Thomas TT, Dinakar C, Puthur JT (2019) Effect of UV‑B priming on the abiotic stress tolerance of stress-sensitive 1 rice seedlings: 2 priming imprints and cross-tolerance. Plant Physiol Bioch 147:21–30

    Google Scholar 

  • Espanany A, Fallah S, Tadayyon A (2016) Seed priming improves seed germination and reduces oxidative stress in black cumin (Nigella sativa) in presence of cadmium. Ind Crop Prod 79:195–204

    CAS  Google Scholar 

  • FAO (1992) CROPWAT, a computer program for irrigation planning and management by M. Smith. FAO Irrigation and Drainage Paper 26. FAO, FAO

    Google Scholar 

  • FAO (2011a) Quinoa: an ancient crop to contribute to world food security. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2011b) The state of the worlds land and water resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fischer S, Wilckens R, Jara J, Aranda M, Valdivia W, Bustamante L, Graf F, Obal I (2017) Protein and antioxidant composition of quinoa (Chenopodium quinoa Willd.) sprout from seeds submitted to water stress, salinity and light conditions. Ind Crop Prod 107:558–564

    CAS  Google Scholar 

  • Fuentes F, Bhargava A (2011) Morphological analysis of quinoa germplasm grown under lowland desert conditions. J Agron Crop Sci 197:124–134

    Google Scholar 

  • Ghamarnia H, Jalili Z (2014) Shallow saline groundwater by black cumin (Nigella sativa L.) in the presence of surface water in a semi-arid region. Agric Water Manag 132:89–100

    Google Scholar 

  • Ghassemi-Golezani K, Farshbaf-Jafari S, Shafagh-Kolvanagh J (2011) Seed priming and field performance of soybean (Glycine max L.) in response to water limitation. Notulae Bot Horti Agrobot Cluj Nnapoca 39:186–189. https://doi.org/10.15835/nbha3926122

    Article  Google Scholar 

  • Gonzalez JA, Gallardo M, Hilal M, Rosa M, Prado FE (2009) Physiological responses of quinoa (Chenopodium quinoa Willd.) to drought and water logging stresses: dry matter partitioning. Bot Stud 50:35–42

    CAS  Google Scholar 

  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    CAS  Google Scholar 

  • Hosseinzadeh-Mahootchi A, Ghassemi-Golezani K (2013) The impact of seed priming and aging on physiological performance of chickpea under different irrigation treatments. Plant Breed Seed Sci. https://doi.org/10.2478/v10129-011-0066-2

    Article  Google Scholar 

  • Hozayn M, Zeidan SM, Abd El-Lateef EM, Abd El-Salam MS (2007) Performance of some Mungbean (Vignna radiate L. Wilczek) genotypes under late sowing condition in Egypt. Res J Agric Biol Sci 3:972–978

    Google Scholar 

  • Hussain S, Khan F, Hussain HA, Nie L (2016) Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front Plant Sci 7:116

    PubMed  PubMed Central  Google Scholar 

  • Ibrahim EA (2016) Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol 192:38–46

    CAS  PubMed  Google Scholar 

  • Iqbal H, Yaning C, Waqas M, Shareef M, Raza ST (2018) Differential response of quinoa genotypes to drought and foliage-applied H2O2 in relation to oxidative damage, osmotic adjustment and antioxidant capacity. Ecotoxicol Environ Saf 164:344–354

    CAS  PubMed  Google Scholar 

  • Iqbal H, Yaning C, Rehman H, Waqas M, Ahmed Z, Raza S, Shareef M (2020) Improving heat stress tolerance in late planted spring maize by using different exogenous elicitors. Chil J Agr Res 80(1):30–40

    Google Scholar 

  • Jacobsen SE, Liu F, Jensen CR (2009) Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.). Sci Hortic 122:281–287

    CAS  Google Scholar 

  • Jisha KC, Puthur JT (2015) Seed priming with BABA (β-amino butyric acid): a cost-effective method of abiotic stress tolerance in Vigna radiata (L.) Wilczek. Protoplasma 235:277–289

    Google Scholar 

  • Jongrungklang N, Toomsan B, Vorasoot N, Jogloy S, Boote KJ, Hoogenboom G, Patanothai A (2013) Drought tolerance mechanisms for yield responses to pre-flowering drought stress of peanut genotypes with different drought tolerant levels. Field Crop Res 144:34–42

    Google Scholar 

  • Khan MN, Zhang J, Luo T, Liu J, Rizwan M, Fahad S, Xu Z, Hu L (2019) Seed priming with melatonin coping drought stress in rapeseed by regulating reactive oxygen species detoxification: antioxidant defense system, osmotic adjustment, stomatal traits and chloroplast ultrastructure perseveration. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2019.111597

    Article  Google Scholar 

  • Li Y, Yin LY, Jongsma MA, Wang CY (2011) Effects of light, hydropriming and abiotic stress on seed germination, and shoot and root growth of pyrethrum (Tanacetum cinerariifolium). Ind Crops Prod 43(3):1543–1549

    CAS  Google Scholar 

  • Mao L, Pang H, Wang G, Zhu C (2007) Phospholipase D and lipoxygenase activity of cucumber fruit in response to chilling stress. Postharvest Biol Tec 44:42–47

    CAS  Google Scholar 

  • Marica A, Cuculeanu V (1999) Uses of a decision support system for agricultural management under different climate conditions. 4th European Conference on Applications of Meteorology (ECAM99), p 135

    Google Scholar 

  • Matias JR, Torres SB, Leal CCP, de Leite MS, Carvalho SMC (2018) Hydropriming as inducer of salinity tolerance in sunflower seeds. Rev Bras Engenharia Agríc Ambient 22:255–260

    Google Scholar 

  • Moreno C, Seal CE, Papenbrock J (2017) Seed priming improves germination in saline conditions for Chenopodium quinoa and Amaranthus caudatus. J Agron Crop Sci 204(1):40–48

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  Google Scholar 

  • Nikolaeva MK, Maevskaya SN, Shugaev AG, Bukhov NG (2010) Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity. Russ J Plant Physl 57:87–95

    CAS  Google Scholar 

  • Okçu G, Kaya MD, Atak M (2005) Effects of salt and drought stresses ongermination and seedling growth of pea (P. sativum L.). Turk J Agric For 29:237–242

    Google Scholar 

  • Pouramir-Dashtmian F, Khajeh-Hosseini M, Esfahani M (2014) Improving chilling tolerance of rice seedling by seed priming with salicylic acid. Arch Agron Soil Sci 60:1291–1302

    CAS  Google Scholar 

  • Razzaghi F, Plauborg F, Jacobsen SE, Jensen CR, Andersen MN (2012) Effect of nitrogen and water availability of three soil types on yield, radiation use efficiency and evapotranspiration in field-grown quinoa. Agric Water Manag 109:20–29

    Google Scholar 

  • Ritchie SW, Nguyen HT, Holaday AS (1990) Leaf water content and gas-exchange parameters of two wheat genotypes differing in drought resistance. Crop Sci 30(1):105–111

    Google Scholar 

  • Rong-Hua L, Pei-Guo G, Baum M, Grando S, Ceccarelli S (2006) Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agric Sci Chin 5:751–757

    Google Scholar 

  • Salah SM, Yajing G, Dongdong C, Jie L, Aamir N, Qijuan H, Weimin H, Mingyu N, Jin H (2015) Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress. Sci Rep 5:14273

    Google Scholar 

  • Salemi F, Nasr-Esfahani M, Phan TL (2019) Mechanistic insights into enhanced tolerance of early growth of alfalfa (Medicago sativa L.) under low water potential by seed-priming with ascorbic acid or polyethylene glycol solution. Ind Crops Prod 137:436–445

    CAS  Google Scholar 

  • Sağlam Yılmaz S, Day S, Kaya G, GÜRb ÜZA (2010) Hydropriming increases germination of lentil (lens culinaris Medik.) under water stress. Not Sci Biol 2:103–106. https://doi.org/10.15835/nsb224602

    Article  Google Scholar 

  • Shakeri E, Mozafari AA, Sohrabi F, Saed-Moucheshi A (2020) Role of proline and other osmoregulatory compounds in plant responses to abiotic stresses, 4th edn. Handbook of Plant and Crop Stress. CRC Press, USA, pp 165–175

    Google Scholar 

  • Smith M (1992) CROPWAT—A computer program for irrigation planning and management. FAO Irrigation and Drainage Paper 46

    Google Scholar 

  • Songa Q, Caiyun-Liua B, Bachira DG, Chena L, Hua YG (2017) Drought resistance of new synthetic hexaploid wheat accessions evaluated by multiple traits and antioxidant enzyme activity. Field Crop Res 210:91–103

    Google Scholar 

  • Tabassum T, Ahmad R, Farooq M, Basra SMA (2018) Improving the drought tolerance in 655 Barley by osmopriming and biopriming. Int J Agric Biol 20:1597–1606

    CAS  Google Scholar 

  • Talebnejad R, Sepaskhah AR (2015) Effect of deficit irrigation and different saline groundwater depths onyield and water productivity of quinoa. Agric Sci Chin 159:225–238

    Google Scholar 

  • Wang Q, Ding T, Zuo J, Gao L, Fan L (2016) Amelioration of postharvest chilling injury in sweet pepper by glycine betaine. Postharvest Biol Tec 112:114–120

    CAS  Google Scholar 

  • Yan M (2015) Seed priming stimulate germination and early seedling growth of Chinese cabbage under drought stress. S Afr J Bot 99:88–92

    CAS  Google Scholar 

  • Ye J, Wang S, Deng X, Yin L, Xiong B (2016) Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiol Plant. https://doi.org/10.1007/s11738-015-2045-y

    Article  Google Scholar 

  • Zhao Y, Aspinall D, Paleg LG (1992) Protection of membrane integrity in Medicago sativa L. by Glycinebetaine against the effects of freezing. J Plant Physiol 140(5):541–543. https://doi.org/10.1016/S0176-1617(11)80785-6

    Article  CAS  Google Scholar 

  • Zhao Y, Hu M, Gao Z, Chen X, Huang D (2018) Biological mechanisms of a novel hydro-electro hybrid priming recovers potential vigor of onion seeds. Environ Exp 150:260–271

    Google Scholar 

  • Zivcak M, Brestic M, Sytar O (2016) Osmotic adjustment and plant adaptation to drought stress. In: Hossain MA, Wani SH, Bhattacharjee S, Burritt DJ, Tran L‑SP (eds) Physiology and Biochemistry. Drought Stress Tolerance in Plants, vol 1. Springer, Cham, pp 105–143

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Asghari.

Ethics declarations

Conflict of interest

F. Nadali, H.R. Asghari, H. Abbasdokht, V. Dorostkar and M. Bagheri declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadali, F., Asghari, H.R., Abbasdokht, H. et al. Improved Quinoa Growth, Physiological Response, and Yield by Hydropriming Under Drought Stress Conditions. Gesunde Pflanzen 73, 53–66 (2021). https://doi.org/10.1007/s10343-020-00527-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-020-00527-1

Keywords

Schlüsselwörter

Navigation