Skip to main content
Log in

Biomineralized and chemically synthesized magnetic nanoparticles: A contrast

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

An Erratum to this article was published on 15 May 2021

This article has been updated

Abstract

Magnetic nanoparticles (MNPs) have widely been synthesized through chemical processes for biomedical applications over the past few decades. Recently, a new class of MNPs, known as bacterial magnetosomes, has been isolated from magnetotactic bacteria, a natural source. These magnetosomes are magnetite or greigite nanocrystals which are biomineralized in the bacterial cell and provide magnet-like properties to it. Contrary to MNPs, bacterial magnetosomes are biocompatible, lower in toxicity, and can be easily cleared from the body due to the presence of a phospholipid bilayer around them. They also do not demonstrate aggregation, which makes them highly advantageous. In this review, we have provided an in-depth comparative account of bacterial magnetosomes and chemically synthesized MNPs in terms of their synthesis, properties, and biomedical applications. In addition, we have also provided a contrast on how magnetosomes might have the potential to successfully substitute synthetic MNPs in therapeutic and imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Pankhurst Q, Jones S, Dobson J. Applications of magnetic nanoparticles in biomedicine: The story so far. Journal of Physics D: Applied Physics, 2016, 49(50): 501002

    Article  Google Scholar 

  2. Han L, Li S, Yang Y, et al. Comparison of magnetite nanocrystal formed by biomineralization and chemosynthesis. Journal of Magnetism and Magnetic Materials, 2007, 313(1): 236–242

    Article  CAS  Google Scholar 

  3. Yan L, Zhang S, Chen P, et al. Magnetotactic bacteria, magnetosomes and their application. Microbiological Research, 2012, 167(9): 507–519

    Article  CAS  Google Scholar 

  4. Alphandéry E. Applications of magnetosomes synthesized by magnetotactic bacteria in medicine. Frontiers in Bioengineering and Biotechnology, 2014, 2: 5

    Google Scholar 

  5. Jacob J J, Suthindhiran K. Magnetotactic bacteria and magnetosomes — Scope and challenges. Materials Science & Engineering C: Materials for Biological Applications, 2016, 68: 919–928

    Article  CAS  Google Scholar 

  6. Xie J, Chen K, Chen X Y. Production, modification and bioapplications of magnetic nanoparticles gestated by magnetotactic bacteria. Nano Research, 2009, 2(4): 261–278

    Article  CAS  Google Scholar 

  7. Kahani S A, Yagini Z. A comparison between chemical synthesis magnetite nanoparticles and biosynthesis magnetite. Bioinorganic Chemistry and Applications, 2014, 2014: 384984

    Article  Google Scholar 

  8. Kalirai S S, Bazylinski D A, Hitchcock A P. Anomalous magnetic orientations of magnetosome chains in a magnetotactic bacterium: Magnetovibrio blakemorei strain MV-1. PLoS One, 2013, 8(1): e53368

    Article  CAS  Google Scholar 

  9. Wang L, Sun Y, Li Z, et al. Bottom-up synthesis and sensor applications of biomimetic nanostructures. Materials, 2016, 9(1): 53

    Article  Google Scholar 

  10. Priyadarshana G, Kottegoda N, Senaratne A, et al. Synthesis of magnetite nanoparticles by top-down approach from a high purity ore. Journal of Nanomaterials, 2015, 2015: 1–8

    Article  Google Scholar 

  11. Huang J, Li Y, Orza A, et al. Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image-guided approaches. Advanced Functional Materials, 2016, 26(22): 3818–3836

    Article  CAS  Google Scholar 

  12. Dutz S, Hergt R, Mürbe J, et al. Hysteresis losses of magnetic nanoparticle powders in the single domain size range. Journal of Magnetism and Magnetic Materials, 2007, 308(2): 305–312

    Article  CAS  Google Scholar 

  13. Lu A H, Salabas E L, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition, 2007, 46(8): 1222–1244

    Article  CAS  Google Scholar 

  14. Woo K, Hong J, Choi S, et al. Easy synthesis and magnetic properties of iron oxide nanoparticles. Chemistry of Materials, 2004, 16(14): 2814–2818

    Article  CAS  Google Scholar 

  15. Faraji M, Yamini Y, Rezaee M. Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications. Journal of the Iranian Chemical Society, 2010, 7(1): 1–37

    Article  CAS  Google Scholar 

  16. Tartaj P, Veintemillas-Verdaguer S, Gonzalez-Carreño T, et al. Preparation of magnetic nanoparticles for applications in biomedicine. In: Southern P, Darton N J, Ionescu A, et al., eds. Magnetic Nanoparticles in Biosensing and Medicine. Cambridge, UK: Cambridge University Press, 2019, 52–67

    Chapter  Google Scholar 

  17. Nejati-Koshki K, Mesgari M, Ebrahimi E, et al. Synthesis and in vitro study of cisplatin-loaded Fe3O4 nanoparticles modified with PLGA-PEG6000 copolymers in treatment of lung cancer. Journal of Microencapsulation, 2014, 31(8): 815–823

    Article  CAS  Google Scholar 

  18. Butter K, Kassapidou K, Vroege G J, et al. Preparation and properties of colloidal iron dispersions. Journal of Colloid and Interface Science, 2005, 287(2): 485–495

    Article  CAS  Google Scholar 

  19. Mason T J, Lorimer J P. Applied Sonochemistry: The Uses of Power Ultrasound in Chemistry and Processing. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2002

    Book  Google Scholar 

  20. Schüler D, Frankel R B. Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Applied Microbiology and Biotechnology, 1999, 52(4): 464–473

    Article  Google Scholar 

  21. Sun J B, Zhao F, Tang T, et al. High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air. Applied Microbiology and Biotechnology, 2008, 79(3): 389–397

    Article  CAS  Google Scholar 

  22. Moisescu C, Bonneville S, Staniland S, et al. Iron uptake kinetics and magnetosome formation by Magnetospirillum gryphiswaldense as a function of pH, temperature and dissolved iron availability. Geomicrobiology Journal, 2011, 28(7): 590–600

    Article  CAS  Google Scholar 

  23. Komeili A. Molecular mechanisms of magnetosome formation. Annual Review of Biochemistry, 2007, 76(1): 351–366

    Article  CAS  Google Scholar 

  24. Lowenstam H A. Minerals formed by organisms. Science, 1981, 211(4487): 1126–1131

    Article  CAS  Google Scholar 

  25. Penninga I, de Waard H, Moskowitz B M, et al. Remanence measurements on individual magnetotactic bacteria using a pulsed magnetic field. Journal of Magnetism and Magnetic Materials, 1995, 149(3): 279–286

    Article  CAS  Google Scholar 

  26. Arakaki A, Nakazawa H, Nemoto M, et al. Formation of magnetite by bacteria and its application. Journal of the Royal Society, Interface, 2008, 5(26): 977–999

    Article  CAS  Google Scholar 

  27. Dehsari H S, Ribeiro A H, Ersöez B, et al. Effect of precursor concentration on size evolution of iron oxide nanoparticles. CrystEngComm, 2017, 19(44): 6694–6702

    Article  Google Scholar 

  28. Sugimoto T, ed. Fine Particles: Synthesis, Characterization, and Mechanism of Growth. New York, USA: Marcel Dekker, Inc., 2000

  29. Wegner G. Biomineralization: Progress in biology, molecular biology and application, 2nd revised ed. Edited by E. Bäuerlein. ChemBioChem, 2005, 6(4): 762–763

    Article  CAS  Google Scholar 

  30. Mamiya H. Recent advances in understanding magnetic nanoparticles in AC magnetic fields and optimal design for targeted hyperthermia. Journal of Nanomaterials, 2013, 2013: 752973

    Article  Google Scholar 

  31. Nidhin M, Indumathy R, Sreeram K J, et al. Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates. Bulletin of Materials Science, 2008, 31(1): 93–96

    Article  CAS  Google Scholar 

  32. Atta-ur-Rahman F R S, Choudhary M I, eds. Frontiers in Anti-Cancer Drug Discovery. UAE: Bentham Science Publisher, 2013

    Google Scholar 

  33. Qi L, Lv X, Zhang T, et al. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells. Scientific Reports, 2016, 6(1): 26961

    Article  CAS  Google Scholar 

  34. Bini R A, Marques R F, Santos F J, et al. Synthesis and functionalization of magnetite nanoparticles with different aminofunctional alkoxysilanes. Journal of Magnetism and Magnetic Materials, 2012, 324(4): 534–539

    Article  CAS  Google Scholar 

  35. Justin C, Philip S A, Samrot A V. Synthesis and characterization of superparamagnetic iron-oxide nanoparticles (SPIONs) and utilization of SPIONs in X-ray imaging. Applied Nanoscience, 2017, 7(7): 463–475

    Article  CAS  Google Scholar 

  36. Bazylinski D A, Schübbe S. Controlled biomineralization by and application of magnetotactic bacteria. In: Laskin A I, Sariaslani S, Gadd G M, eds. Advances in Applied Microbiology (Volume 62). San Diego, CA, USA: Elsevier Inc., 2007, 21–62

    Google Scholar 

  37. Zhou J, Gan N, Li T, et al. A cost-effective sandwich electrochemiluminescence immunosensor for ultrasensitive detection of HIV-1 antibody using magnetic molecularly imprinted polymers as capture probes. Biosensors & Bioelectronics, 2014, 54: 199–206

    Article  CAS  Google Scholar 

  38. Sun J, Li Y, Liang X J, et al. Bacterial magnetosome: A novel biogenetic magnetic targeted drug carrier with potential multi-functions. Journal of Nanomaterials, 2011, 2011: 469031

    Article  Google Scholar 

  39. Dunin-Borkowski R E, McCartney M R, Frankel R B, et al. Magnetic microstructure of magnetotactic bacteria by electron holography. Science, 1998, 282(5395): 1868–1870

    Article  CAS  Google Scholar 

  40. Kiani B, Faivre D, Klumpp S. Elastic properties of magnetosome chains. New Journal of Physics, 2015, 17(4): 043007

    Article  Google Scholar 

  41. Lins U, McCartney M R, Farina M, et al. Habits of magnetosome crystals in coccoid magnetotactic bacteria. Applied and Environmental Microbiology, 2005, 71(8): 4902–4905

    Article  CAS  Google Scholar 

  42. Sugimoto T, Matijevic E. Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. Journal of Colloid and Interface Science, 1980, 74(1): 227–243

    Article  CAS  Google Scholar 

  43. Jolivet J P. Metal Oxide Chemistry and Synthesis: From Solutions to Solid State. New York, USA: John Wiley & Sons, Ltd., 2000

    Google Scholar 

  44. Nishio K, Ikeda M, Gokon N, et al. Preparation of size-controlled (30–100 nm) magnetite nanoparticles for biomedical applications. Journal of Magnetism and Magnetic Materials, 2007, 310(2): 2408–2410

    Article  CAS  Google Scholar 

  45. Bazylinski D A, Garratt-Reed A J, Frankel R B. Electron microscopic studies of magnetosomes in magnetotactic bacteria. Microscopy Research and Technique, 1994, 27(5): 389–401

    Article  CAS  Google Scholar 

  46. Balkwill D L, Maratea D, Blakemore R P. Ultrastructure of a magnetotactic spirillum. Journal of Bacteriology, 1980, 141(3): 1399–1408

    Article  CAS  Google Scholar 

  47. Lins U, Freitas F, Keim C N, et al. Electron spectroscopic imaging of magnetotactic bacteria: Magnetosome morphology and diversity. Microscopy and Microanalysis, 2000, 6(5): 463–470

    Article  CAS  Google Scholar 

  48. Butter K, Hoell A, Wiedenmann A, et al. Small-angle neutron and X-ray scattering of dispersions of oleic-acid-coated magnetic iron particles. Journal of Applied Crystallography, 2004, 37(6): 847–856

    Article  CAS  Google Scholar 

  49. Moskowitz B M, Frankel R B, Flanders P, et al. Magnetic properties of magnetotactic bacteria. Journal of Magnetism and Magnetic Materials, 1988, 73(3): 273–288

    Article  Google Scholar 

  50. Deatsch A E, Evans B A. Heating efficiency in magnetic nanoparticle hyperthermia. Journal of Magnetism and Magnetic Materials, 2014, 354: 163–172

    Article  CAS  Google Scholar 

  51. Liu Y, Li G R, Guo F F, et al. Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density. Microbial Cell Factories, 2010, 9(1): 99

    Article  Google Scholar 

  52. Alphandéry E, Faure S, Seksek O, et al. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano, 2011, 5(8): 6279–6296

    Article  Google Scholar 

  53. Martinez-Boubeta C, Simeonidis K, Makridis A, et al. Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Scientific Reports, 2013, 3(1): 1652

    Article  Google Scholar 

  54. Józefczak A, Leszczyński B, Skumiel A, et al. A comparison between acoustic properties and heat effects in biogenic (magnetosomes) and abiotic magnetite nanoparticle suspensions. Journal of Magnetism and Magnetic Materials, 2016, 407: 92–100

    Article  Google Scholar 

  55. Revathy T, Jayasri M A, Suthindhiran K. Toxicity assessment of magnetosomes in different models. 3 Biotech, 2017, 7: 126 (11 pages)

    CAS  Google Scholar 

  56. Patravale V, Dandekar P, Jain R. Nanoparticulate Drug Delivery: Perspectives on the Transition from Laboratory to Market. Cambridge, UK: Woodhead Publishing Limited, 2012, 123–155

    Google Scholar 

  57. Liu R, Liu J, Tong J, et al. Heating effect and biocompatibility of bacterial magnetosomes as potential materials used in magnetic fluid hyperthermia. Progress in Natural Science, 2012, 22(1): 31–39

    Article  CAS  Google Scholar 

  58. Naqvi S, Samim M, Abdin M Z, et al. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. International Journal of Nanomedicine, 2010, 5: 983–989

    Article  CAS  Google Scholar 

  59. Li X, Wang B, Jin H, et al. Bacterial magnetic particles (BMPs)-PEI as a novel and efficient non-viral gene delivery system. The Journal of Gene Medicine, 2007, 9(8): 679–690

    Article  CAS  Google Scholar 

  60. Balasubramanian S, Girija A R, Nagaoka Y, et al. Curcumin and 5-fluorouracil-loaded, folate- and transferrin-decorated polymeric magnetic nanoformulation: a synergistic cancer therapeutic approach, accelerated by magnetic hyperthermia. International Journal of Nanomedicine, 2014, 9: 437–459

    Google Scholar 

  61. Chalkidou A, Simeonidis K, Angelakeris M, et al. In vitro application of Fe/MgO nanoparticles as magnetically mediated hyperthermia agents for cancer treatment. Journal of Magnetism and Magnetic Materials, 2011, 323(6): 775–780

    Article  CAS  Google Scholar 

  62. Sun J, Tang T, Duan J, et al. Biocompatibility of bacterial magnetosomes: acute toxicity, immunotoxicity and cytotoxicity. Nanotoxicology, 2010, 4(3): 271–283

    Article  CAS  Google Scholar 

  63. Delcroix G J, Jacquart M, Lemaire L, et al. Mesenchymal and neural stem cells labeled with HEDP-coated SPIO nanoparticles: in vitro characterization and migration potential in rat brain. Brain Research, 2009, 1255: 18–31

    Article  CAS  Google Scholar 

  64. Hu F, Neoh K G, Cen L, et al. Cellular response to magnetic nanoparticles “PEGylated” via surface-initiated atom transfer radical polymerization. Biomacromolecules, 2006, 7(3): 809–816

    Article  CAS  Google Scholar 

  65. Hussain S M, Hess K L, Gearhart J M, et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in Vitro, 2005, 19(7): 975–983

    Article  CAS  Google Scholar 

  66. Gupta A K, Curtis A S G. Surface modified superparamagnetic nanoparticles for drug delivery: Interaction studies with human fibroblasts in culture. Journal of Materials Science: Materials in Medicine, 2004, 15(4): 493–496

    CAS  Google Scholar 

  67. Sun J B, Duan J H, Dai S L, et al. In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: the magnetic bio-nanoparticles as drug carriers. Cancer Letters, 2007, 258(1): 109–117

    Article  CAS  Google Scholar 

  68. Lei Han, Li S Y, Yong Yang, et al. Research on the structure and performance of bacterial magnetic nanoparticles. Journal of Biomaterials Applications, 2008, 22(5): 433–448

    Article  Google Scholar 

  69. Xiaoming L, Lee S C, Zhang S, et al. Biocompatibility and toxicity of nanobiomaterials. Journal of Nanomaterials, 2012, 2012: 591278

    Google Scholar 

  70. Derfus A, Chan W, Bhatia S. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Advanced Materials, 2004, 16(12): 961–966

    Article  CAS  Google Scholar 

  71. Vonarbourg A, Passirani C, Saulnier P, et al. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials, 2006, 27(24): 4356–4373

    Article  CAS  Google Scholar 

  72. Kim J A, Lee H J, Kang H J, et al. The targeting of endothelial progenitor cells to a specific location within a microfluidic channel using magnetic nanoparticles. Biomedical Microdevices, 2009, 11 (1): 287–296

    Article  Google Scholar 

  73. Dandekar P, Dhumal R, Jain R, et al. Toxicological evaluation of pH-sensitive nanoparticles of curcumin: Acute, sub-acute and genotoxicity studies. Food and Chemical Toxicology, 2010, 48(8–9): 2073–2089

    Article  CAS  Google Scholar 

  74. García A, Espinosa R, Delgado L, et al. Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination, 2011, 269(1–3): 136–141

    Article  Google Scholar 

  75. Timko M, Dzarova A, Kovac J, et al. Magnetic properties and heating effect in bacterial magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2009, 321(10): 1521–1524

    Article  CAS  Google Scholar 

  76. Hergt R, Hiergeist R, Zeisberger M, et al. Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. Journal of Magnetism and Magnetic Materials, 2005, 293 (1): 80–86

    Article  CAS  Google Scholar 

  77. Alphandéry E, Guyot F, Chebbi I. Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia. International Journal of Pharmaceutics, 2012, 434(1–2): 444–452

    Article  Google Scholar 

  78. Hu L L, Zhang F, Wang Z, et al. Comparison of the 1H NMR relaxation enhancement produced by bacterial magnetosomes and synthetic iron oxide nanoparticles for potential use as MR molecular probes. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 822–825

    Article  CAS  Google Scholar 

  79. Xiang Z, Yang X, Xu J, et al. Tumor detection using magnetosome nanoparticles functionalized with a newly screened EGFR/HER2 targeting peptide. Biomaterials, 2017, 115: 53–64

    Article  CAS  Google Scholar 

  80. Mody V V, Singh A, Wesley B. Basics of magnetic nanoparticles for their application in the field of magnetic fluid hyperthermia. European Journal of Nanomedicine, 2013 doi:https://doi.org/10.1515/ejnm2012-0008

  81. Grouzdev D S, Dziuba M V, Kurek D V, et al. Optimized method for preparation of IgG-binding bacterial magnetic nanoparticles. PLoS One, 2014, 9(10): e109914

    Article  Google Scholar 

  82. Takahashi M, Yoshino T, Matsunaga T. Surface modification of magnetic nanoparticles using asparagines-serine polypeptide designed to control interactions with cell surfaces. Biomaterials, 2010, 31(18): 4952–4957

    Article  CAS  Google Scholar 

  83. Matsunaga T, Takahashi M, Yoshino T, et al. Magnetic separation of CD14+ cells using antibody binding with protein A expressed on bacterial magnetic particles for generating dendritic cells. Biochemical and Biophysical Research Communications, 2006, 350(4): 1019–1025

    Article  CAS  Google Scholar 

  84. Bañobre-López M, Teijeiro A, Rivas J. Magnetic nanoparticle-based hyperthermia for cancer treatment. Reports of Practical Oncology and Radiotherapy, 2013, 18(6): 397–400

    Article  Google Scholar 

  85. Bender E, Schramm T. Instruments for facilitation and improvement of procedures in cell and tissue cultivation. 2. Roller arrangement according to the prefabricated construction system, lifting arrangement for pressure filters and semi-automatic feeding device. Zeitschrift fur Medizinische Labortechnik, 1966, 7(6): 365–369

    CAS  Google Scholar 

  86. Strom R, Crifo C, Rossi-Fanelli A, et al. Biochemical aspects of heat sensitivity of tumour cells. In: Rossi-Fanelli A, Cavaliere R, Mondovì B, eds. Recent Results in Cancer Research: Selective Heat Sensitivity of Cancer Cells. Berlin, Germany: Springer-Verlag, 1977, 7–35

    Chapter  Google Scholar 

  87. Sun J B, Wang Z L, Duan J H, et al. Targeted distribution of bacterial magnetosomes isolated from Magnetospirillum gryphiswaldense MSR-1 in healthy Sprague-Dawley rats. Journal of Nanoscience and Nanotechnology, 2009, 9(3): 1881–1885

    Article  CAS  Google Scholar 

  88. Brown M A, Semelka R C. MRI: Basic Principles and Applications. 3rd ed. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2003, 33–48

    Book  Google Scholar 

  89. Mitchell D G, Cohen M S. MRI Principles. 2nd ed. Philadelphia, PA, USA: W. B. Saunders Company, 2004

    Google Scholar 

  90. Orlando T, Mannucci S, Fantechi E, et al. Characterization of magnetic nanoparticles from Magnetospirillum gryphiswaldense as potential theranostics tools. Contrast Media & Molecular Imaging, 2016, 11(2): 139–145

    Article  CAS  Google Scholar 

  91. Kraupner A, Eberbeck D, Heinke D, et al. Bacterial magnetosomes — nature’s powerful contribution to MPI tracer research. Nanoscale, 2017, 9(18): 5788–5793

    Article  CAS  Google Scholar 

  92. Mériaux S, Boucher M, Marty B, et al. Magnetosomes, biogenic magnetic nanomaterials for brain molecular imaging with 17.2 T MRI scanner. Advanced Healthcare Materials, 2015, 4(7): 1076–1083

    Article  Google Scholar 

  93. Widder K J, Morris R M, Poore G, et al. Tumor remission in Yoshida sarcoma-bearing rts by selective targeting of magnetic albumin microspheres containing doxorubicin. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(1): 579–581

    Article  CAS  Google Scholar 

  94. Pulfer S K, Gallo J M. Enhanced brain tumor selectivity of cationic magnetic polysaccharide microspheres. Journal of Drug Targeting, 1998, 6(3): 215–227

    Article  CAS  Google Scholar 

  95. Yalcin S, Unsoy G, Mutlu P, et al. Polyhydroxybutyrate-coated magnetic nanoparticles for doxorubicin delivery: cytotoxic effect against doxorubicin-resistant breast cancer cell line. American Journal of Therapeutics, 2014, 21(6): 453–461

    Article  Google Scholar 

  96. Häfeli U O, Riffle J S, Harris-Shekhawat L, et al. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Molecular Pharmaceutics, 2009, 6(5): 1417–1428

    Article  Google Scholar 

  97. Long R, Liu Y, Dai Q, et al. A natural bacterium-produced membrane-bound nanocarrier for drug combination therapy. Materials, 2016, 9(11): 889

    Article  Google Scholar 

  98. Liu Y G, Dai Q L, Wang S B, et al. Preparation and in vitro antitumor effects of cytosine arabinoside-loaded genipin-poly-1-glutamic acid-modified bacterial magnetosomes. International Journal of Nanomedicine, 2015, 10: 1387–1397

    Article  CAS  Google Scholar 

  99. Yoshino T, Hirabe H, Takahashi M, et al. Magnetic cell separation using nano-sized bacterial magnetic particles with reconstructed magnetosome membrane. Biotechnology and Bioengineering, 2008, 101(3): 470–477

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a grant from the Department of Science and Technology (DST-SERB project; Grant No. ECR/2017/000049), Government of India, for which the authors are thankful. The authors acknowledge Institute of Nano Science and Technology for the facilities and assistance provided to carry out this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepika Sharma.

Additional information

Disclosure of potential conflicts of interests

All authors equally contributed to the conception, literature search, drafting, and critical revisions to the article. The authors declare no financial/intellectual conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanda, T., Rathore, A. & Sharma, D. Biomineralized and chemically synthesized magnetic nanoparticles: A contrast. Front. Mater. Sci. 14, 387–401 (2020). https://doi.org/10.1007/s11706-020-0531-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-020-0531-7

Keywords

Navigation