Skip to main content
Log in

Dynamic Tensile Response of a Microwave Damaged Granitic Rock

  • Brief Technical Note
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

Understanding the dynamic tensile response of microwave damaged rock is of great significance to promote the development of microwave-assisted hard rock breakage technology. However, most of the current research on this issue is limited to static loading conditions, which is inconsistent with the dynamic stress circumstances encountered in real rock-breaking operations.

Objective

The objective of this work is to investigate the effects of microwave irradiation on the dynamic tensile strength, full-field displacement distribution and average fracture energy of a granitic rock.

Methods

The split Hopkinson pressure bar (SHPB) system combined with digital image correlation (DIC) technique is adopted to conduct the experiments. The overload phenomenon, which refers to the strength over-estimation phenomenon in the Brazilian test, is validated using the conventional strain gauge method. Based on the DIC analysis, a new approach for calculating the average fracture energy is proposed.

Results

Experimental results show that both the apparent and true tensile strengths increase with the loading rate while decreasing with the increase of the irradiation duration; and the true tensile strength after overload correction is lower than the apparent strength. Besides, the overload ratio and fracture energy also show the loading rate and irradiation duration dependency.

Conclusions

Our findings prove clearly that microwave irradiation significantly weakens the dynamic tensile properties of granitic rock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Hartlieb P, Grafe B (2017) Experimental study on microwave assisted hard rock cutting of granite. BHM Berg-und Hüttenmännische Monatshefte 162(2):77–81. https://doi.org/10.1007/s00501-016-0569-0

    Article  Google Scholar 

  2. Hassani F, Nekoovaght P (2011) The development of microwave assisted machineries to break hard rocks. In: Proceedings of the 28th International Symposium on Automation and Robotics in Construction (ISARC). Seoul: South Korea. pp 678–684. https://doi.org/10.22260/ISARC2011/0127

  3. Hassani F, Nekoovaght PM, Gharib N (2016) The influence of microwave irradiation on rocks for microwave-assisted underground excavation. J Rock Mech Geotech Eng 8(1):1–15. https://doi.org/10.1016/j.jrmge.2015.10.004

    Article  Google Scholar 

  4. Lu G-M, Feng X-T, Li Y-H, Zhang X (2019) The microwave-induced fracturing of hard rock. Rock Mech Rock Eng 52:3017–3032. https://doi.org/10.1007/s00603-019-01790-z

    Article  Google Scholar 

  5. Kingman S, Corfield G, Rowson N (1999) Effects of microwave radiation upon the mineralogy and magnetic processing of a massive Norwegian ilmenite ore. Phys Sep Sci Eng 9(3):131–148. https://doi.org/10.1155/1999/57075

    Article  Google Scholar 

  6. Nicco M, Holley EA, Hartlieb P, Kaunda R, Nelson PP (2018) Methods for characterizing cracks induced in rock. Rock Mech Rock Eng 51(7):2075–2093. https://doi.org/10.1007/s00603-018-1445-x

    Article  Google Scholar 

  7. Lu G-M, Feng X-T, Li Y-H, Hassani F, Zhang X (2019) Experimental investigation on the effects of microwave treatment on basalt heating, mechanical strength, and fragmentation. Rock Mech Rock Eng 52:2535–2549. https://doi.org/10.1007/s00603-019-1743-y

    Article  Google Scholar 

  8. Zheng Y, Zhang Q, Zhao J (2017) Effect of microwave treatment on thermal and ultrasonic properties of gabbro. Appl Therm Eng 127:359–369. https://doi.org/10.1016/j.applthermaleng.2017.08.060

    Article  Google Scholar 

  9. Hartlieb P, Toifl M, Kuchar F, Meisels R, Antretter T (2016) Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution. Miner Eng 91:34–41. https://doi.org/10.1016/j.mineng.2015.11.008

    Article  Google Scholar 

  10. Lu G-m, Y-h L, Hassani F, Zhang X (2017) The influence of microwave irradiation on thermal properties of main rock-forming minerals. Appl Therm Eng 112:1523–1532. https://doi.org/10.1016/j.applthermaleng.2016.11.015

    Article  Google Scholar 

  11. Sun W, Ling J, Huo J, Guo L, Zhang X (2013) Deng L (2013) dynamic characteristics study with multidegree-of-freedom coupling in TBM cutterhead system based on complex factors. Math Probl Eng 2013:1–17. https://doi.org/10.1155/2013/635809

    Article  Google Scholar 

  12. Yao W, Xia K, Liu H-W (2018) Influence of heating on the dynamic tensile strength of two mortars: experiments and models. Int J Impact Eng 122:407–418. https://doi.org/10.1016/j.ijimpeng.2018.09.010

    Article  Google Scholar 

  13. Song B, Sanborn B, Susan D, Johnson K, Dabling J, Carroll J, Brink A, Grutzik S, Kustas A (2019) Correction of specimen strain measurement in Kolsky tension bar experiments on work-hardening materials. Int J Impact Eng 132:103328. https://doi.org/10.1016/j.ijimpeng.2019.103328

    Article  Google Scholar 

  14. Zhang QB, Zhao J (2014) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng 47(4):1411–1478. https://doi.org/10.1007/s00603-013-0463-y

    Article  Google Scholar 

  15. Chu T, Ranson W, Sutton MA (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 25(3):232–244. https://doi.org/10.1007/BF02325092

    Article  Google Scholar 

  16. Mellor M, Hawkes I (1971) Measurement of tensile strength by diametral compression of discs and annuli. Eng Geol 5(3):173–225. https://doi.org/10.1016/0013-7952(71)90001-9

    Article  Google Scholar 

  17. Zhou Y, K-w X, Li X, Li H, Ma G, Zhao J, Zhou Z, Dai F (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min Sci 49:105–112. https://doi.org/10.1007/978-3-319-07713-0_3

    Article  Google Scholar 

  18. Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20(6):062001. https://doi.org/10.1088/0957-0233/20/6/062001

    Article  Google Scholar 

  19. Gao G, Huang S, Xia K, Li Z (2015) Application of digital image correlation (DIC) in dynamic notched semi-circular bend (NSCB) tests. Exp Mech 55(1):95–104. https://doi.org/10.1007/s11340-014-9863-5

    Article  Google Scholar 

  20. Blaber J, Adair B, Antoniou A (2015) Ncorr: open-source 2D digital image correlation Matlab software. Exp Mech 55(6):1105–1122. https://doi.org/10.1007/s11340-015-0009-1

    Article  Google Scholar 

  21. Zhang Q, Zhao J (2013) Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads. Int J Rock Mech Min Sci 60:423–439. https://doi.org/10.1016/j.ijrmms.2013.01.005

    Article  Google Scholar 

  22. Xia K, Yao W, Wu B (2017) Dynamic rock tensile strengths of Laurentian granite: experimental observation and micromechanical model. J Rock Mech Geotech Eng 9(1):116–124. https://doi.org/10.1016/j.jrmge.2016.08.007

    Article  Google Scholar 

  23. Li X, Wang S, Xu Y, Yao W, Xia K, Lu G (2020) Effect of microwave irradiation on dynamic mode-Ι fracture parameters of Barre granite. Eng Fract Mech 224:106748. https://doi.org/10.1016/j.engfracmech.2019.106748

    Article  Google Scholar 

  24. Yao W, Xu Y, Wang W, Kanopolous P (2016) Dependence of dynamic tensile strength of longyou sandstone on heat-treatment temperature and loading rate. Rock Mech Rock Eng 49(10):3899–3915. https://doi.org/10.1007/s00603-015-0895-7

    Article  Google Scholar 

  25. Sutton MA, Li N, Joy D, Reynolds AP, Li X (2007) Scanning electron microscopy for quantitative small and large deformation measurements part I: SEM imaging at magnifications from 200 to 10,000. Exp Mech 47(6):775–787. https://doi.org/10.1007/s11340-007-9042-z

    Article  Google Scholar 

  26. Sutton MA, Li N, Garcia D, Cornille N, Orteu J-J, McNeill S, Schreier H, Li X, Reynolds AP (2007) Scanning electron microscopy for quantitative small and large deformation measurements part II: experimental validation for magnifications from 200 to 10,000. Exp Mech 47(6):789–804. https://doi.org/10.1007/s11340-007-9041-0

    Article  Google Scholar 

  27. Efimov V (2009) The rock strength in different tension conditions. J Min Sci 45(6):569–575. https://doi.org/10.1007/s10913-009-0071-0

    Article  Google Scholar 

  28. Perras MA, Diederichs MS (2014) A review of the tensile strength of rock: concepts and testing. Geotech Geol Eng 32(2):525–546. https://doi.org/10.1007/s10706-014-9732-0

    Article  Google Scholar 

  29. Li D, Wong LNY (2013) The Brazilian disc test for rock mechanics applications: review and new insights. Rock Mech Rock Eng 46(2):269–287. https://doi.org/10.1007/s00603-012-0257-7

    Article  Google Scholar 

  30. Fuenkajorn K, Klanphumeesri S (2010) Laboratory determination of direct tensile strength and deformability of intact rocks. Geotech Test J 34(1):97–102. https://doi.org/10.1520/GTJ103134

    Article  Google Scholar 

  31. Fengchun J, Ruitang L, Xiaoxin Z, Vecchio KS, Rohatgi A (2004) Evaluation of dynamic fracture toughness KId by Hopkinson pressure bar loaded instrumented Charpy impact test. Eng Fract Mech 71(3):279–287. https://doi.org/10.1016/S0013-7944(03)00139-5

    Article  Google Scholar 

  32. Dai F, Huang S, Xia K, Tan Z (2010) Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech Rock Eng 43(6):657–666. https://doi.org/10.1007/s00603-010-0091-8

    Article  Google Scholar 

  33. Yin T, Li X, Cao W, Xia K (2015) Effects of thermal treatment on tensile strength of Laurentian granite using Brazilian test. Rock Mech Rock Eng 48(6):2213–2223. https://doi.org/10.1007/s00603-015-0712-3

    Article  Google Scholar 

  34. Zhou Z, Li X, Zou Y, Jiang Y, Li G (2014) Dynamic Brazilian tests of granite under coupled static and dynamic loads. Rock Mech Rock Eng 47(2):495–505. https://doi.org/10.1007/s00603-013-0441-4

    Article  Google Scholar 

  35. Song B, Chen W (2006) Energy for specimen deformation in a split Hopkinson pressure bar experiment. Exp Mech 46(3):407–410. https://doi.org/10.1007/s11340-006-6420-x

    Article  Google Scholar 

  36. Chen J, Guo B, Liu H, Liu H, Chen P (2014) Dynamic Brazilian test of brittle materials using the split Hopkinson pressure bar and digital image correlation. Strain 50(6):563–570. https://doi.org/10.1111/str.12118

    Article  Google Scholar 

  37. Yin T, Li X, Xia K, Huang S (2012) Effect of thermal treatment on the dynamic fracture toughness of Laurentian granite. Rock Mech Rock Eng 45(6):1087–1094. https://doi.org/10.1007/s00603-012-0240-3

    Article  Google Scholar 

  38. Curran D, Seaman L, Shockey D (1987) Dynamic failure of solids. Phys Rep 147(5–6):253–388. https://doi.org/10.1016/0370-1573(87)90049-4

    Article  Google Scholar 

  39. Yao W, Xu Y, Xia K (2020) Damage evolution during rock pulverization induced by dynamic compressive loading. Journal of Geophysical Research: Solid Earth 125(5):e2020JB019388. https://doi.org/10.1029/2020jb019388

    Article  Google Scholar 

  40. Wu B, Yao W, Xia K (2016) An experimental study of dynamic tensile failure of rocks subjected to hydrostatic confinement. Rock Mech Rock Eng 49(10):3855–3864. https://doi.org/10.1007/s00603-016-0946-8

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Natural Science Foundation of China (NSFC) under Grants #51879184 and #51704211. K.X. acknowledges financial support by the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Discovery Grant #72031326.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Xia.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, S., Xia, K. et al. Dynamic Tensile Response of a Microwave Damaged Granitic Rock. Exp Mech 61, 461–468 (2021). https://doi.org/10.1007/s11340-020-00677-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-020-00677-3

Keywords

Navigation