Skip to main content

Advertisement

Log in

Flow is more Important than Temperature in Driving Patterns of Organic Matter Storage and Stoichiometry in Stream Ecosystems

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Understanding the connections between biological communities and elemental cycles is increasingly important given that alterations to both are occurring on a global scale. Biological control of elemental cycles is tied to patterns of biomass and the elemental stoichiometry of organisms and organic matter (OM) pools that comprise ecosystems. The structure and size of these ecosystem components are, in turn, shaped by key environmental factors that influence species composition, functional traits, and OM and element storage. In stream and river ecosystems, temperature and flow regime have a strong influence on ecosystem structure and function, yet little is known about their relative importance in driving patterns of ecosystem OM and stoichiometry. We quantified ecosystem OM pools and elemental stoichiometry in 11 Icelandic streams across a wide gradient of temperature (~ 5 to 25 °C) and flow. Across these environmental gradients, we observed two orders of magnitude variation in ecosystem OM mass, as well as relatively large variation in certain ecosystem stoichiometries (that is, C:N, C:P). We found that flow regime was more important than temperature in driving variation in OM pools and stoichiometry because of large shifts in community structure, that is, from dominance by large-bodied macrophyte and bryophyte communities to epilithic and detrital OM pools. Although temperature is known to influence mass-specific rates of metabolic and chemical processes, our study suggests that the flow disturbance regime may be the dominant control on patterns of OM storage and may thus control ecosystem fluxes by constraining ecosystem OM pool mass, organism size structure, and stoichiometric traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data Availability

Code and data for reconstructing the results and figures are available at: https://github.com/jimjunker1/Junker_OMstoic and Zenodo: https://doi.org/10.5281/zenodo.3756279.

References

  • Allan JD, Castillo MM. 2007. Stream ecology: structure and function of running waters. Dordrecht, Netherlands: Springer.

    Book  Google Scholar 

  • Allen AP, Brown JH, Gillooly JF. 2002. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297:1545–1548.

    Article  CAS  PubMed  Google Scholar 

  • Allen AP, Gillooly JF, Brown JH. 2005. Linking the global carbon cycle to individual metabolism. Functional Ecology 19:202–213.

    Article  Google Scholar 

  • APHA [American Public Health Association]. 1992. Standard methods for the examination of water and wastewater.

  • Árnason B, Theodorsson P, Björnsson S, Saemundsson K. 1969. Hengill, a high temperature thermal area in iceland. Bulletin of Volcanology 33:245–259.

    Article  Google Scholar 

  • Benstead JP, Rosemond AD, Cross WF, Wallace JB, Eggert SL, Suberkropp K, Gulis V, Greenwood JL, Tant CJ. 2009. Nutrient enrichment alters storage and fluxes of detritus in a headwater stream ecosystem. Ecology 90:2556–2566.

    Article  PubMed  Google Scholar 

  • Bernhardt JR, Sunday JM, O’Connor MI. 2018. Metabolic theory and the temperature-size rule explain the temperature dependence of population carrying capacity. The American Naturalist 192:687–697.

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: a practical information-theoretic approach. New York, NY: Springer-Verlag.

    Google Scholar 

  • Cardinale BJ, Hillebrand H, Harpole WS, Gross K, Ptacnik R. 2009. Separating the influence of resource “availability” from resource “imbalance” on productivity-diversity relationships. Ecology Letters 12:475–487.

    Article  PubMed  Google Scholar 

  • Cleveland CC, Liptzin D. 2007. C:N: P stoichiometry in soil: Is there a “redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252.

    Article  Google Scholar 

  • Cohen MJ, Kurz MJ, Heffernan JB, Martin JB, Douglass RL, Foster CR, Thomas RG. 2013. Diel phosphorus variation and the stoichiometry of ecosystem metabolism in a large spring-fed river. Ecological Monographs 83:155–176.

    Article  Google Scholar 

  • Cross WF, Benstead JP, Frost PC, Thomas SA. 2005. Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives. Freshwater Biology 50:1895–1912.

    Article  CAS  Google Scholar 

  • Cross WF, Hood JM, Benstead JP, Huryn AD, Nelson D. 2015. Interactions between temperature and nutrients across levels of ecological organization. Global Change Biology 21:1025–1040.

    Article  PubMed  Google Scholar 

  • De Senerpont Domis LN, Van de Waal DB, Helmsing NR, Van Dork E, Mooij WM. 2014. Community stoichiometry in a changing world: combined effects of warming and eutrophication on phytoplankton dynamics. Ecology 95:1485–1495.

    Article  Google Scholar 

  • Demars BOL, Edwards AC. 2007. Tissue nutrient concentrations in freshwater aquatic macrophytes: high inter-taxon differences and low phenotypic response to nutrient supply. Freshwater Biology 52:2073–2086.

    Article  CAS  Google Scholar 

  • Demars BOL, Gíslason GM, Ólafsson JS, Manson JR, Friberg N, Hood JM, Thompson JJD, Freitag TE. 2016. Impact of warming on co2 emissions from streams countered by aquatic photosynthesis. Nature Geoscience 9:758–761.

    Article  CAS  Google Scholar 

  • Demars BOL, Manson JR, Olafsson JS, Gislason GM, Gudmundsdottir R, Woodward G, Reiss J, Pichler DE, Rasmussen JJ, Friberg N. 2011. Temperature and the metabolic balance of streams. Freshwater Biology 56:1106–1121.

    Article  Google Scholar 

  • Dewar RC, Medlyn BE, Mcmurtrie RE. 1999. Acclimation of the respiration/photosynthesis ratio to temperature: insights from a model. Global Change Biology 5:615–622.

    Article  Google Scholar 

  • Elser JJ, Dobberfuhl DR, Mackay NA, Schampel JH. 1996. Organism size, life history, and n: P stoichiometry. Bioscience 46:674–684.

    Article  Google Scholar 

  • Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LJ. 2000. Biological stoichiometry from genes to ecosystems. Ecology Letters 3:540–550.

    Article  Google Scholar 

  • Enquist BJ, Norberg J, Bonser SP, Violle C, Webb CT, Henderson A, Sloat LL, Savage VM. 2015. Scaling from traits to ecosystems: developing a general trait driver theory via integrating trait-based and metabolic scaling theories. 52:249–318.

    Google Scholar 

  • Farrell KJ, Rosemond AD, Kominoski JS, Bonjour SM, Rüegg J, Koenig LE, Baker CL, Trentman MT, Harms TK, McDowell WH. 2018. Variation in detrital resource stoichiometry signals differential carbon to nutrient limitation for stream consumers across biomes. Ecosystems 21:1676–1691.

    Article  CAS  Google Scholar 

  • Friberg N, Dybkjaer JB, Olafsson JS, Gislason GM, Larsen SE, Lauridsen TL. 2009. Relationships between structure and function in streams contrasting in temperature. Freshwater Biology 54:2051–2068.

    Article  CAS  Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL. 2001. Effects of size and temperature on metabolic rate. Science 293:2248–2251.

    Article  CAS  PubMed  Google Scholar 

  • Gordon ND, McMahon TA, Finlayson BL, Gippel CJ, Nathan RJ. 2004. Stream hydrology: an introduction for ecologists. West Sussex, England: Wiley. p 423p.

    Google Scholar 

  • Gore JA. 2006. Discharge measurements and streamflow analysis. Hauer FR, Lamberti GA editors. Methods in stream ecology. Cambridge, Massachesetts: Academic Press, p51–78.

  • Grime JP. 1998. Benefits of plant diversity to ecosystems: immediate, filter, and founder effects. Journal of Ecology 86:902–910.

    Article  Google Scholar 

  • Gudmundsdottir R, Gislason GM, Palsson S, Olafsson JS, Schomacker A, Friberg N, Woodward G, Hannesdottir ER, Moss B. 2011. Effects of temperature regime on primary producers in icelandic geothermal streams. Aquatic Botany 95:278–286.

    Article  Google Scholar 

  • Harte J, Shaw R. 1995. Shifting dominance within a montane vegetation community: results of a climate-warming experiment. Science 267:876–880.

    Article  CAS  PubMed  Google Scholar 

  • Holmes RM, Aminot A, Kérouel R, Hooker BA, Peterson BJ. 1999. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 56:1801–1808.

    Article  CAS  Google Scholar 

  • Hood JM, Benstead JP, Cross WF, Huryn AD, Johnson PW, Gislason GM, Junker JR, Nelson D, Olafsson JS, Tran C. 2018. Increased resource use efficiency amplifies positive response of aquatic primary production to experimental warming. Global Change Biology 24:1069–1084.

    Article  PubMed  Google Scholar 

  • Huey RB, Stevenson RD. 1979. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. American Journal of Zoology 19:357–366.

    Article  Google Scholar 

  • IPCC. 2014. Climate change 2014: Synthesis report. Contribution of working groups i, ii and iii to the fifth assessment report of the intergovernmental panel on climate change. Core Writing Team, Pachauri RK, Meyer LA editors. Geneva, Switzerland: IPCC, p151.

  • Jóhannsson B. 2003. Íslenskir mosar: Skrár og viðbætur. Fjölrit Náttúrufræðistofnunar 44.

  • Keddy PA. 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3:157–164.

    Article  Google Scholar 

  • Kerkhoff AJ, Enquist BJ. 2006. Ecosystem allometry: the scaling of nutrient stocks and primary productivity across plant communities. Ecology Letters 9:419–427.

    Article  PubMed  Google Scholar 

  • Kerkhoff AJ, Enquist BJ, Elser JJ, Fagan WF. 2005. Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecology and Biogeography 14:585–598.

    Article  Google Scholar 

  • King SA, Heffernan JB, Cohen MJ. 2014. Nutrient flux, uptake, and autotrophic limitation in streams and rivers. Freshwater Science 33:85–98.

    Article  Google Scholar 

  • Legendre P. 2018. Lmodel2: Model ii regression. R package version 1.7–3. https://cran.r-project.org/package=lmodel2

  • Lytle DA, Poff NL. 2004. Adaptation to natural flow regimes. Trends in Ecology & Evolution 19:94–100.

    Article  Google Scholar 

  • McGroddy ME, Daufresne T, Hedin LO. 2004. Scaling of c:N: P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology 85:2390–2401.

    Article  Google Scholar 

  • Meunier CL, Boersma M, El-Sabaawi R, Halvorson HM, Herstoff EM, Van de Waal DB, Vogt RJ, Litchman E. 2017. From elements to function: toward unifying ecological stoichiometry and trait-based ecology. Frontiers in Environmental Science 5.

  • Michaletz ST, Cheng D, Kerkhoff AJ, Enquist BJ. 2014. Convergence of terrestrial plant production across global climate gradients. Nature 512:39–43.

    Article  CAS  PubMed  Google Scholar 

  • Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27:31–36.

    Article  CAS  Google Scholar 

  • Norberg J, Swaney DP, Dushoff J, Lin J, Casagrandi R, Levin SA. 2001. Phenotypic diversity and ecosystem functioning in changing environments: a theoretical framework. Proceedings of the National Academy of Sciences 98:11376–11381.

    Article  CAS  Google Scholar 

  • O’Gorman EJ, Benstead JP, Cross WF, Friberg N, Hood JM, Johnson PW, Sigurdsson BD, Woodward G. 2014. Climate change and geothermal ecosystems: natural laboratories, sentinel systems, and future refugia. Global Change Biology 20:3291–3299.

    Article  PubMed  Google Scholar 

  • O’Gorman EJ, Pichler DE, Adams G, Benstead JP, Cohen H, Craig N, Cross WF, Demars BOL, Friberg N, Gíslason GM, Gudmundsdóttir R, Hawczak A, Hood JM, Hudson LN, Johansson L, Johansson MP, Junker JR, Laurila A, Manson JR, Mavromati E, Nelson D, Ólafsson JS, Perkins DM, Petchey OL, Plebani M, Reuman DC, Rall BC, Stewart R, Thompson MSA, Woodward G. 2012. Impacts of warming on the structure and functioning of aquatic communities. Advances in Ecological Research 47:81–176.

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn DJ, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2019. Vegan: Community ecology package. R Package version 2.5–6. https://CRAN.R-project.org/package=vegan

  • Padfield D, Lowe C, Buckling A, French-Constant R, Team SR, Jennings S, Shelley F, Olafsson JS, Yvon-Durocher G. 2017. Metabolic compensation constrains the temperature dependence of gross primary production. Ecology Letters 20:1250–1260.

    Article  PubMed  PubMed Central  Google Scholar 

  • Persson J, Fink P, Goto A, Hood JM, Jonas J, Kato S. 2010. To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 119:1–11.

    Article  CAS  Google Scholar 

  • Pickett STA, White PS. 1985. The ecology of natural disturbance and patch dynamics: Academic Press. 472p.

  • Poff NL. 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16:391–409.

    Article  Google Scholar 

  • R Core Team. 2016. R: a language and environment for statistical computing. https://www.R-project.org/

  • Redfield AC. 1958. The biological control of chemical factors in the environment. American Scientist 976:205–221.

    Google Scholar 

  • Reich PB, Oleksyn J. 2004. Global patterns of plant leaf n and p in relation to temperature and latitude. Proceedings of the National Academy of Sciences 101:11001–11006.

    Article  CAS  Google Scholar 

  • Resh VH, Brown AV, Covich AP, Gurtz ME, Li HW, Minshall GW, Reice SR, Sheldon AL, Wallace JB, Wissmar RC. 1988. The role of disturbance in stream ecology. Journal of the North American Benthological Society 7:433–455.

    Article  Google Scholar 

  • Rhee G, Gotham IJ. 1981. The effect of environmental factors on phytoplankton growth: temperature and the interactions of temperature with nutrient limitation. Limnology and Oceanography 26:635–348.

    Article  CAS  Google Scholar 

  • Riis T, Biggs BJF. 2003. Hydrologic and hydraulic control of macrophyte establishment and performance in streams. Limnology and Oceanography 48:1488–1497.

    Article  Google Scholar 

  • Savage VM, Gillooly JF, Brown JH, West GB, Charnov EL. 2004. Effects of body size and temperature on population growth. The American Naturalist 163:429–441.

    Article  PubMed  Google Scholar 

  • Schade JD, Espeleta JF, Klausmeier CA, McGroddy ME, Thomas SA, Zhang L. 2005. A conceptual framework for ecosystem stoichiometry: balancing resource supply and demand. Oikos 109:40–51.

    Article  Google Scholar 

  • Šímová I, Sandel B, Enquist BJ, Michaletz ST, Kattge J, Violle C, McGill BJ, Blonder B, Engemann K, Peet RK, Wiser SK, Morueta-Holme N, Boyle B, Kraft NJB, Svenning J-C. 2019. The relationship of woody plant size and leaf nutrient content to large-scale productivity for forests across the americas. Journal of Ecology 107:2278–2290.

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Hill BH, Follstad Shah JJ. 2009. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462:795–798.

    Article  CAS  PubMed  Google Scholar 

  • Sistla SA, Schimel JP. 2012. Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change. The New phytologist 196:68–78.

    Article  CAS  PubMed  Google Scholar 

  • Stefansson S. 1948. Flora islands iii. Aukureyri, IS: Hid Islenzka natturufraedifelag. p 407p.

    Google Scholar 

  • Stegen JC, Swenson NG, Enquist BJ, White EP, Phillips OL, Jørgensen PM, Weiser MD, Mendoza AM, Vargas PN. 2011. Variation in above-ground forest biomass across broad climatic gradients. Global Ecology and Biogeography 20:744–754.

    Article  Google Scholar 

  • Taylor BW, Keep CF, Hall RO, Koch BJ, Tronstad LM, Flecker AS, Ulseth AJ. 2007. Improving the fluorometric ammonium method: matrix effects, background fluorescence, and standard additions. Journal of the North American Benthological Society 26:167–177.

    Article  Google Scholar 

  • Townsend AR, Asner GP, Cleveland CC. 2008. The biogeochemical heterogeneity of tropical forests. Trends in Ecology & Evolution 23:424–431.

    Article  Google Scholar 

  • Valett HM, Thomas SA, Mulholland PJ, Webster JR, Dahm CN, Fellows CS, Crenshaw CL, Peterson CG. 2008. Endogenous and exongenous control of ecosystem function: N cycling in headwater streams. Ecology 89:3515–3527.

    Article  CAS  PubMed  Google Scholar 

  • van Vliet MTH, Franssen WHP, Yearsley JR, Ludwig F, Haddeland I, Lettenmaier DP, Kabat P. 2013. Global river discharge and water temperature under climate change. Global Environmental Change 23:450–464.

    Article  Google Scholar 

  • Vannote RL, Sweeney BW. 1980. Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. The American Naturalist 115:667–695.

    Article  Google Scholar 

  • Vitousek PM. 1982. Nutrient cycling and nutrient use efficiency. The American Naturalist 119:553–572.

    Article  Google Scholar 

  • Welter JR, Benstead JP, Cross WF, Hood JM, Huryn AD, Johnson PW, Williamson TJ. 2015. Does n2 fixation amplify the temperature dependence of ecosystem metabolism? Ecology 96:603–610.

    Article  PubMed  Google Scholar 

  • Williamson TJ, Cross WF, Benstead JP, Gislason GM, Hood JM, Huryn AD, Johnson PW, Welter JR. 2016. Warming alters coupled carbon and nutrient cycles in experimental streams. Global Change Biology 22:2152–2164.

    Article  PubMed  Google Scholar 

  • Wolman MG. 1954. A method of sampling coarse river-bed material. Transactions of the American Geophysical Union 35:951–956.

    Article  Google Scholar 

  • Woods HA, Fagan WF, Elser JJ, Harrison JF. 2004. Allometric and phylogenetic variation in insect phosphorus content. Functional Ecology 18:103–109.

    Article  Google Scholar 

  • Woods HA, Makino W, Cotner JB, Hobbie SE, Harrison JF, Acharya K, Elser JJ. 2003. Temperature and the chemical composition of poikilothermic organisms. Functional Ecology 17:237–245.

    Article  Google Scholar 

  • Yvon-Durocher G, Caffrey JM, Cescatti A, Dossena M, del Giorgio P, Gasol JM, Montoya JM, Pumpanen J, Staehr PA, Trimmer M, Woodward G, Allen AP. 2012. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487:472–476.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank a number of individuals who contributed to this work: A. Toomey, B. Weigel, S. Layton, and R. McClure provided indispensable help in the field and laboratory. E. J. N. Brookshire, G. C. Poole and B. O. L. Demars contributed input on earlier versions and two anonymous reviewers provided feedback that greatly improved the clarity of the manuscript. We are grateful to Sigurður Guðjonsson, Guðni Guðbergsson, and the staff at the Veiðimálastofnun for laboratory space and logistical support. We are also grateful to Sveinbjörn Steinórsson of the University of Iceland for winter transport to our field sites. This work was supported in part by a Grant-In-Aid-of-Research to JRJ from Sigma-Xi (Grant ID #G20120315162084) and from the National Science Foundation (DEB-0949726 to WFC and DEB-0949774 and DEB-1354624 to JPB and ADH).

Author information

Authors and Affiliations

Authors

Contributions

WFC, JPB, ADH, JMH, and JRJ conceived the study, all authors helped with study design, GMG and JSO provided field support and local arrangements, all authors contributed to data collection, JRJ performed analyses and wrote the first draft of the manuscript, and all authors provided input on further manuscript drafts.

Corresponding author

Correspondence to James R. Junker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Supplementary material 1 (DOCX 2053 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junker, J.R., Cross, W.F., Benstead, J.P. et al. Flow is more Important than Temperature in Driving Patterns of Organic Matter Storage and Stoichiometry in Stream Ecosystems. Ecosystems 24, 1317–1331 (2021). https://doi.org/10.1007/s10021-020-00585-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-020-00585-6

Keywords

Navigation