Skip to main content
Log in

Molecular Detection of Human Adenovirus and Rotavirus in Feces of White-Eared Opossums

  • Original Contribution
  • Published:
EcoHealth Aims and scope Submit manuscript

Abstract

The white-eared opossums (Didelphis albiventris) is the largest Brazilian marsupial and a great example of animal synanthropy. Considering the high potential as a carrier of viruses originating from environmental contamination, the presence of Human adenovirus (AdV) and rotavirus was investigated in the feces of rescued white-eared opossums, which were in the process of rehabilitation. The feces of 49 animals were initially investigated by immunochromatography, with three samples positive for AdV and one sample positive for rotavirus. When submitted to PCR and nested PCR, the samples of six animals were positive for AdV and three animals were positive for group A rotavirus. Two positive samples in the immunochromatographic assay were not confirmed by PCR. After sequencing and phylogenetic analysis of AdV samples, all were identified within the genus Mastadenovirus, one being HAdV-C, four HAdV-E, and one being similar to a Mastadenovirus found in primates. This is the first report of molecular confirmation of human adenovirus and rotavirus in white-eared opossums. These data could be important of anticipation some emerging diseases and their effects on ecosystems health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

References

  • Abe M, Yamasaki A, Ito N, Mizoguchi T, Asano M, Okano T (2010) Molecular characterization of rotaviruses in a Japanese raccoon dog (Nyctereutes procyonoides) and a masked palm civet (Paguma larvata) in Japan. Veterinary Microbiology 146(3–4):253–259.

    Article  CAS  Google Scholar 

  • Carducci UM, Battistini R, Rovini E, Verani M (2009) Viral Removal by Wastewater Treatment: Monitoring of Indicators and Pathogens. Food and Environmental Virology 1:85-91.

    Article  Google Scholar 

  • Chiappetta CM, Cibulski SP, Lima FE, Varela AP, Amorim DB, Tavares M, Roehe PM (2017) Molecular Detection of Circovirus and Adenovirus in Feces of Fur Seals (Arctocephalus spp.). Ecohealth 14(1):69-77.

    Article  Google Scholar 

  • Coria-Galindo E, Huerta ER, Rodríguez AV, Dulce Brousset, Sandie Salazar, and Luis Padilla-Noriega (2009) Rotavirus infections in Galapagos sea lions. Journal of Wildlife Diseases 45(3):722-728.

    Article  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife-threats to biodiversity and human health. Science 287:443-449.

    Article  CAS  Google Scholar 

  • Dhingra A, Hage E, Ganzenmueller T, Böttcher S, Hofmann J, Hanprecth K, Obermeier P, Rath B, Hausmann F, Dobner T, Heim A (2019) Molecular Evolution of Human Adenovirus (HAdV) Species C. Scientific Reports 9(1):1039.

    Article  Google Scholar 

  • Esona MD, Mijatovic-Rustempasic S, Conrardy C, Tong S, Kuzmin IV, Agwanda B (2010) Reassortant group A rotavirus from straw-colored fruit bat (Eidolon helvum). Emerging Infectius Diseases 16(12):1844-1852.

    Article  Google Scholar 

  • Gonçalves NN, Maçanares CAF. Miglino MA (2009) Aspectos morfológicos dos órgãos genitais femininos do gambá (Didelphis sp.). Brazilian Journal of Veterinary Research and Animal Science 46(4):332–338.

    Article  Google Scholar 

  • Heller L, Colosimo EA, AntunesS CM (2003) Environmental sanitation conditions and health impact: a case-control study. Revista da Sociedade Brasileira de Medicina Tropical 36:41-50.

    Article  Google Scholar 

  • Huang GH, Xu WB (2013) Recent advances in new types of human adenovirus. Bing Du Xue Bao 29, 342–348.

    CAS  PubMed  Google Scholar 

  • ICTV – International Committee on Taxonomy of Viruses (2019) Available: https://talk.ictvonline.org/ictv-reports/ictv_9th_report/dsdna-viruses 2011/w/dsdna_viruses/93/adenoviridae [accessed Jun 1, 2019].

  • Jikion S, Wetzel A, Lejeune J (2007) Salmonella enterica isolated from wildlife et two Ohio rehabilitation centers. Journal of Zoo Wildlife Medicine 38(3):09-413.

    Google Scholar 

  • Kumar, S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7):1870-1874.

    Article  CAS  Google Scholar 

  • Lessa LG, Geise L (2010) Hábitos alimentares de marsupiais didelphídeos brasileiros: análise do estado de conhecimento atual. Oecologia Australis 14(4):901-910.

    Article  Google Scholar 

  • Li Y, Ge X, Zhang H, Zhou P, Zhu Y, Zhang Y, Yuan J, Wang LF, Shi Z (2010) Host range, prevalence, and genetic diversity of adenoviruses in bats. Journal of Virology 84:3889–3897.

    Article  CAS  Google Scholar 

  • Lion T. (2014) Adenovirus infections in immunocompetent and immunocompromised patients. Clinical Microbiology Reviews 27(3):441–462.

    Article  CAS  Google Scholar 

  • Martella V, Bányai K, Matthijnssens J, Buonavoglia C, Ciarlet M (2010) Zoonotic aspects of rotaviruses. Veterinary Microbiology 140(3-4):246-255.

    Article  CAS  Google Scholar 

  • Monteiro GS, Fleck JD, Kluge M, Rech NK, Soliman MC, Staggemeier R, Rodrigues MT, Barros MP, Heinzelmann LS, Spilki FR (2015) Adenoviruses of canine and human origins in stool samples from free-living pampas foxes (Lycalopex gymnocercus) and crab-eating foxes (Cerdocyon thous) in São Francisco de Paula, Rio dos Sinos basin. Brazilian Journal of Biology 75(2):11–16.

    Article  CAS  Google Scholar 

  • Nascimento CC, Horta MC (2014) Didelphimorphia (Gambá e Cuíca). In: Cubas ZS, Silva JCR, Catão-Dias JL Tratado de Animais Selvagens (Medicina Veterinária), São Paulo: Roca Brasil, p.682-706.

    Google Scholar 

  • NURFS/CETAS - UFPEL. Núcleo de reabilitação da fauna silvestre e Centro de Triagem de animais silvestres, Instituto de Biologia, Universidade Federal de Pelotas. 2016. Avaliable: http://www2.ufpel.edu.br/ib/nurfs/inst.htm [accessed Mar 15, 2019]

  • Okadera K, Abe M, Ito N, Morikawa S, Yamasaki A, Masatani T (2013) Evidence of natural transmission of group A rotavirus between domestic pigs and wild boars (Sus scrofa) in Japan. Infection Genetics and Evolution 20:54-60.

    Article  Google Scholar 

  • Rutjes SA, Lodder WJ, van Leeuwen AD, de Roda Husman AM (2009) Detection of infectious rotavirus in naturally contaminated source waters for drinking water production. Journal of Applied Microbiology 107(1):97-105.

    Article  CAS  Google Scholar 

  • Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Molecular biology and evolution 9(4):678-687.

    CAS  PubMed  Google Scholar 

  • Thomson D, Meers J, Harrach B. Virus Research (2002) Molecular confirmation of an adenovirus in brushtail possums (Trichosurus vulpecula) 26(1-2):189-195.

  • Victoria M.; Rigotto C, Moresco V, Abreu-Corrêa A, Kolesnikovas C, Leite JPG (2010) Assessment of norovirus contamination in environmental samples from Florianópolis city, Southern Brazil. Journal Applied Microbiology 109:231-238.

    CAS  Google Scholar 

  • Vieira CB, Mendes ACO, Oliveira JM, Gaspar AMC, Leite JPG, Miagostovich MP (2012) Vírus entéricos na Lagoa Rodrigo de Freitas. Oecologia Australis 16:540-565.

    Article  Google Scholar 

  • Wevers D, Metzger S, Babweteera F, Bieberbach M, Boesch C (2011) Novel adenoviruses in wild primates: a high level of genetic diversity and evidence of zoonotic transmissions. Journal of Virology 85:10774-10784.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has received financial support from Brazilian agency CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia de O. Hübner.

Ethics declarations

Ethical Approval

All ethical procedures were respected, and the activities were officially authorized by the National Council for the Control of Animal Experimentation (CONCEA), under Registration No. 23110.102426/2017-10.

Human and Animal Rights

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menezes, P.Q., Silva, T.T., Simas, F.B. et al. Molecular Detection of Human Adenovirus and Rotavirus in Feces of White-Eared Opossums. EcoHealth 17, 326–332 (2020). https://doi.org/10.1007/s10393-020-01497-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10393-020-01497-6

Keywords

Navigation