Skip to main content

Advertisement

Log in

Does Weight Loss Improve Clinical Outcomes in Overweight and Obese Patients with Heart Failure?

  • Obesity (KM Gadde and P Singh, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Obesity increases the risk of new onset heart failure (HF), and particularly HF with preserved ejection fraction (HFpEF). Despite the observations of favorable clinical outcomes in HF patients with obesity in general, sometimes referred to as the “obesity paradox,” it is important to recognize that severe obesity is associated with worse clinical outcomes. This review summarizes the effects of obesity treatment on cardiovascular health and HF clinical outcomes.

Recent Findings

Treatment for obesity utilizes a variety of modalities to achieve purposeful weight loss including lifestyle intervention, medications, and bariatric surgery. There are a cluster of benefits of obesity treatment in terms of clinical outcomes in HF. The mechanisms of these benefits include both weight loss-dependent and weight loss-independent mechanisms.

Summary

Obesity treatment is safe and associated with favorable clinical outcomes across the spectrum of the HF population. The potential benefits are facilitated through multiple mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity among adults and youth: United States, 2015-2016. NCHS Data Brief. 2017(288):1–8.

  2. Flegal KM, Carroll MD, Ogden CL, Johnson CL. Prevalence and trends in obesity among US adults, 1999-2000. JAMA. 2002;288(14):1723–7. https://doi.org/10.1001/jama.288.14.1723.

    Article  PubMed  Google Scholar 

  3. Lavie CJ, Milani RV, Ventura HO. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J Am Coll Cardiol. 2009;53(21):1925–32. https://doi.org/10.1016/j.jacc.2008.12.068.

    Article  PubMed  Google Scholar 

  4. Alpert MA. Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am J Med Sci. 2001;321(4):225–36. https://doi.org/10.1097/00000441-200104000-00003.

    Article  CAS  PubMed  Google Scholar 

  5. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2020 Update: a report from the American Heart Association. Circulation. 2020;141(9):e139–596. https://doi.org/10.1161/CIR.0000000000000757.

    Article  PubMed  Google Scholar 

  6. •• Mahajan R, Stokes M, Elliott A, Munawar DA, Khokhar KB, Thiyagarajah A, et al. Complex interaction of obesity, intentional weight loss and heart failure: a systematic review and meta-analysis. Heart. 2020;106(1):58–68. https://doi.org/10.1136/heartjnl-2019-314770The systematic review demonstrated that intentional weight loss induced by bariatric surgery was associated with reduction in LV mass index and LA size, and improved LV diastolic function in obesity.

    Article  PubMed  Google Scholar 

  7. •• McDowell K, Petrie MC, Raihan NA, Logue J. Effects of intentional weight loss in patients with obesity and heart failure: a systematic review. Obes Rev. 2018;19(9):1189–204. https://doi.org/10.1111/obr.12707A systematic review of intentional weight loss in obesity and HF using diferent interventions including diet and/or exercise, medication (orlistat), and bariatric surgery, where weight loss was associated with an improvement in LVEF, functional class, exercise capacity, and improved QOL.

    Article  CAS  PubMed  Google Scholar 

  8. Kindel TL, Foster T, Goldspink P, Kindel SJ, Corbett J, Widlanksy M, et al. Early weight loss independent effects of sleeve gastrectomy on diet-induced cardiac dysfunction in obese, Wistar ratsJ. Obes Surg. 2017;27(9):2370–7. https://doi.org/10.1007/s11695-017-2632-7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. • Kindel TL, Foster T, Harmann L, Strande J. Sleeve gastrectomy in obese Zucker rats restores cardiac function and geometry toward a lean phenotype independent of weight loss. J Card Fail. 2019;25(5):372–9. https://doi.org/10.1016/j.cardfail.2019.04.001An animal study showed evidence of weight loss-independent effects of bariatric surgery (using SG) in rats, showing increased post-operative SV, preserved ejection fraction, and improved IVRT independent of weight loss and caloric restriction.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Algahim MF, Lux TR, Leichman JG, Boyer AF, Miller CC 3rd, Laing ST, et al. Progressive regression of left ventricular hypertrophy two years after bariatric surgery. Am J Med. 2010;123(6):549–55. https://doi.org/10.1016/j.amjmed.2009.11.020.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006;113(6):898–918. https://doi.org/10.1161/CIRCULATIONAHA.106.171016.

    Article  PubMed  Google Scholar 

  12. Dunlay SM, Weston SA, Jacobsen SJ, Roger VL. Risk factors for heart failure: a population-based case-control study. Am J Med. 2009;122(11):1023–8. https://doi.org/10.1016/j.amjmed.2009.04.022.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):1810–52. https://doi.org/10.1161/CIR.0b013e31829e8807.

    Article  PubMed  Google Scholar 

  14. Dunlay SM, Roger VL, Redfield MM. Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2017;14(10):591–602. https://doi.org/10.1038/nrcardio.2017.65.

    Article  PubMed  Google Scholar 

  15. Senaratna CV, Perret JL, Lodge CJ, Lowe AJ, Campbell BE, Matheson MC, et al. Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev. 2017;34:70–81. https://doi.org/10.1016/j.smrv.2016.07.002.

    Article  PubMed  Google Scholar 

  16. Lavie CJ, Pandey A, Lau DH, Alpert MA, Sanders P. Obesity and atrial fibrillation prevalence, pathogenesis, and prognosis: effects of weight loss and exercise. J Am Coll Cardiol. 2017;70(16):2022–35. https://doi.org/10.1016/j.jacc.2017.09.002.

    Article  PubMed  Google Scholar 

  17. Pandey A, LaMonte M, Klein L, Ayers C, Psaty BM, Eaton CB, et al. Relationship between physical activity, body mass index, and risk of heart failure. J Am Coll Cardiol. 2017;69(9):1129–42. https://doi.org/10.1016/j.jacc.2016.11.081.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347(5):305–13. https://doi.org/10.1056/NEJMoa020245.

    Article  PubMed  Google Scholar 

  19. Kenchaiah S, Sesso HD, Gaziano JM. Body mass index and vigorous physical activity and the risk of heart failure among men. Circulation. 2009;119(1):44–52. https://doi.org/10.1161/CIRCULATIONAHA.108.807289.

    Article  PubMed  Google Scholar 

  20. Kenchaiah S, Pocock SJ, Wang D, Finn PV, Zornoff LA, Skali H, et al. Body mass index and prognosis in patients with chronic heart failure: insights from the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) program. Circulation. 2007;116(6):627–36. https://doi.org/10.1161/CIRCULATIONAHA.106.679779.

    Article  PubMed  Google Scholar 

  21. Horwich TB, Broderick S, Chen L, McCullough PA, Strzelczyk T, Kitzman DW, et al. Relation among body mass index, exercise training, and outcomes in chronic systolic heart failure. Am J Cardiol. 2011;108(12):1754–9. https://doi.org/10.1016/j.amjcard.2011.07.051.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kapoor JR, Heidenreich PA. Obesity and survival in patients with heart failure and preserved systolic function: a U-shaped relationship. Am Heart J. 2010;159(1):75–80. https://doi.org/10.1016/j.ahj.2009.10.026.

    Article  PubMed  Google Scholar 

  23. Counihan TB. Heart failure due to extreme obesity. Br Heart J. 1956;18(3):425–6. https://doi.org/10.1136/hrt.18.3.425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alpert MA, Karthikeyan K, Abdullah O, Ghadban R. Obesity and cardiac remodeling in adults: mechanisms and clinical implications. Prog Cardiovasc Dis. 2018;61(2):114–23. https://doi.org/10.1016/j.pcad.2018.07.012.

    Article  PubMed  Google Scholar 

  25. Ebong IA, Goff DC Jr, Rodriguez CJ, Chen H, Bertoni AG. Mechanisms of heart failure in obesity. Obes Res Clin Pract. 2014;8(6):e540–8. https://doi.org/10.1016/j.orcp.2013.12.005.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Graner M, Siren R, Nyman K, Lundbom J, Hakkarainen A, Pentikainen MO, et al. Cardiac steatosis associates with visceral obesity in nondiabetic obese men. J Clin Endocrinol Metab. 2013;98(3):1189–97. https://doi.org/10.1210/jc.2012-3190.

    Article  CAS  PubMed  Google Scholar 

  27. Schipke J, Banmann E, Nikam S, Voswinckel R, Kohlstedt K, Loot AE, et al. The number of cardiac myocytes in the hypertrophic and hypotrophic left ventricle of the obese and calorie-restricted mouse heart. J Anat. 2014;225(5):539–47. https://doi.org/10.1111/joa.12236.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bahceci M, Gokalp D, Bahceci S, Tuzcu A, Atmaca S, Arikan S. The correlation between adiposity and adiponectin, tumor necrosis factor alpha, interleukin-6 and high sensitivity C-reactive protein levels. Is adipocyte size associated with inflammation in adults? J Endocrinol Investig. 2007;30(3):210–4. https://doi.org/10.1007/bf03347427.

    Article  CAS  Google Scholar 

  29. Marques-Vidal P, Bochud M, Bastardot F, Luscher T, Ferrero F, Gaspoz JM, et al. Association between inflammatory and obesity markers in a Swiss population-based sample (CoLaus study). Obes Facts. 2012;5(5):734–44. https://doi.org/10.1159/000345045.

    Article  CAS  PubMed  Google Scholar 

  30. Forsythe LK, Wallace JM, Livingstone MB. Obesity and inflammation: the effects of weight loss. Nutr Res Rev. 2008;21(2):117–33. https://doi.org/10.1017/S0954422408138732.

    Article  CAS  PubMed  Google Scholar 

  31. Bahrami H, Bluemke DA, Kronmal R, Bertoni AG, Lloyd-Jones DM, Shahar E, et al. Novel metabolic risk factors for incident heart failure and their relationship with obesity: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J Am Coll Cardiol. 2008;51(18):1775–83. https://doi.org/10.1016/j.jacc.2007.12.048.

    Article  CAS  PubMed  Google Scholar 

  32. Ueland T, Gullestad L, Nymo SH, Yndestad A, Aukrust P, Askevold ET. Inflammatory cytokines as biomarkers in heart failure. Clin Chim Acta. 2015;443:71–7. https://doi.org/10.1016/j.cca.2014.09.001.

    Article  CAS  PubMed  Google Scholar 

  33. Aune D, Sen A, Prasad M, Norat T, Janszky I, Tonstad S, et al. BMI and all cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ. 2016;353:i2156. https://doi.org/10.1136/bmj.i2156.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Horwich TB, Fonarow GC, Clark AL. Obesity and the obesity paradox in heart failure. Prog Cardiovasc Dis. 2018;61(2):151–6. https://doi.org/10.1016/j.pcad.2018.05.005.

    Article  PubMed  Google Scholar 

  35. Horwich TB, Fonarow GC, Hamilton MA, MacLellan WR, Woo MA, Tillisch JH. The relationship between obesity and mortality in patients with heart failure. J Am Coll Cardiol. 2001;38(3):789–95. https://doi.org/10.1016/s0735-1097(01)01448-6.

    Article  CAS  PubMed  Google Scholar 

  36. Sharma A, Lavie CJ, Borer JS, Vallakati A, Goel S, Lopez-Jimenez F, et al. Meta-analysis of the relation of body mass index to all-cause and cardiovascular mortality and hospitalization in patients with chronic heart failure. Am J Cardiol. 2015;115(10):1428–34. https://doi.org/10.1016/j.amjcard.2015.02.024.

    Article  PubMed  Google Scholar 

  37. Lavie CJ, Osman AF, Milani RV, Mehra MR. Body composition and prognosis in chronic systolic heart failure: the obesity paradox. Am J Cardiol. 2003;91(7):891–4. https://doi.org/10.1016/s0002-9149(03)00031-6.

    Article  PubMed  Google Scholar 

  38. Clark AL, Chyu J, Horwich TB. The obesity paradox in men versus women with systolic heart failure. Am J Cardiol. 2012;110(1):77–82. https://doi.org/10.1016/j.amjcard.2012.02.050.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nagarajan V, Cauthen CA, Starling RC, Tang WH. Prognosis of morbid obesity patients with advanced heart failure. Congest Heart Fail. 2013;19(4):160–4. https://doi.org/10.1111/chf.12038.

    Article  CAS  PubMed  Google Scholar 

  40. Joyce E, Lala A, Stevens SR, Cooper LB, AbouEzzeddine OF, Groarke JD, et al. Prevalence, profile, and prognosis of severe obesity in contemporary hospitalized heart failure trial populations. JACC Heart Fail. 2016;4(12):923–31. https://doi.org/10.1016/j.jchf.2016.09.013.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Packer M, Kitzman DW. Obesity-related heart failure with a preserved ejection fraction: the mechanistic rationale for combining inhibitors of aldosterone, neprilysin, and sodium-glucose Cotransporter-2. JACC Heart Fail. 2018;6(8):633–9. https://doi.org/10.1016/j.jchf.2018.01.009.

    Article  PubMed  Google Scholar 

  42. Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation. 2017;136(1):6–19. https://doi.org/10.1161/CIRCULATIONAHA.116.026807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bickel CA, Verbalis JG, Knepper MA, Ecelbarger CA. Increased renal Na-K-ATPase, NCC, and beta-ENaC abundance in obese Zucker rats. Am J Physiol Ren Physiol. 2001;281(4):F639–48. https://doi.org/10.1152/ajprenal.2001.281.4.F639.

    Article  CAS  Google Scholar 

  44. Packer M. Obesity-associated heart failure as a theoretical target for treatment with mineralocorticoid receptor antagonists. JAMA Cardiol. 2018;3(9):883–7. https://doi.org/10.1001/jamacardio.2018.2090.

    Article  PubMed  Google Scholar 

  45. Madamanchi C, Alhosaini H, Sumida A, Runge MS. Obesity and natriuretic peptides, BNP and NT-proBNP: mechanisms and diagnostic implications for heart failure. Int J Cardiol. 2014;176(3):611–7. https://doi.org/10.1016/j.ijcard.2014.08.007.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Standeven KF, Hess K, Carter AM, Rice GI, Cordell PA, Balmforth AJ, et al. Neprilysin, obesity and the metabolic syndrome. Int J Obes. 2011;35(8):1031–40. https://doi.org/10.1038/ijo.2010.227.

    Article  CAS  Google Scholar 

  47. Rice GI, Jones AL, Grant PJ, Carter AM, Turner AJ, Hooper NM. Circulating activities of angiotensin-converting enzyme, its homolog, angiotensin-converting enzyme 2, and neprilysin in a family study. Hypertension. 2006;48(5):914–20. https://doi.org/10.1161/01.HYP.0000244543.91937.79.

    Article  CAS  PubMed  Google Scholar 

  48. Pandey A, Berry JD, Drazner MH, Fang JC, Tang WHW, Grodin JL. Body mass index, natriuretic peptides, and risk of adverse outcomes in patients with heart failure and preserved ejection fraction: analysis from the TOPCAT trial. J Am Heart Assoc. 2018;7(21):e009664. https://doi.org/10.1161/JAHA.118.009664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Packer M. Epicardial adipose tissue may mediate deleterious effects of obesity and inflammation on the myocardium. J Am Coll Cardiol. 2018;71(20):2360–72. https://doi.org/10.1016/j.jacc.2018.03.509.

    Article  CAS  PubMed  Google Scholar 

  50. Persson CE, Bjorck L, Lagergren J, Lappas G, Giang KW, Rosengren A. Risk of heart failure in obese patients with and without bariatric surgery in Sweden-a registry-based study. J Card Fail. 2017;23(7):530–7. https://doi.org/10.1016/j.cardfail.2017.05.005.

    Article  PubMed  Google Scholar 

  51. Sundstrom J, Bruze G, Ottosson J, Marcus C, Naslund I, Neovius M. Weight loss and heart failure: a nationwide study of gastric bypass surgery versus intensive lifestyle treatment. Circulation. 2017;135(17):1577–85. https://doi.org/10.1161/CIRCULATIONAHA.116.025629.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Reisin E, Frohlich ED, Messerli FH, Dreslinski GR, Dunn FG, Jones MM, et al. Cardiovascular changes after weight reduction in obesity hypertension. Ann Intern Med. 1983;98(3):315–9. https://doi.org/10.7326/0003-4819-98-3-315.

    Article  CAS  PubMed  Google Scholar 

  53. Ramani GV, McCloskey C, Ramanathan RC, Mathier MA. Safety and efficacy of bariatric surgery in morbidly obese patients with severe systolic heart failure. Clin Cardiol. 2008;31(11):516–20. https://doi.org/10.1002/clc.20315.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ashrafian H, le Roux CW, Darzi A, Athanasiou T. Effects of bariatric surgery on cardiovascular function. Circulation. 2008;118(20):2091–102. https://doi.org/10.1161/CIRCULATIONAHA.107.721027.

    Article  PubMed  Google Scholar 

  55. Greenway SE, Greenway FL 3rd, Klein S. Effects of obesity surgery on non-insulin-dependent diabetes mellitus. Arch Surg. 2002;137(10):1109–17. https://doi.org/10.1001/archsurg.137.10.1109.

    Article  PubMed  Google Scholar 

  56. Inge TH, Prigeon RL, Elder DA, Jenkins TM, Cohen RM, Xanthakos SA, et al. Insulin sensitivity and beta-cell function improve after gastric bypass in severely obese adolescents. J Pediatr. 2015;167(5):1042–8 e1. https://doi.org/10.1016/j.jpeds.2015.08.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Borgeraas H, Hjelmesaeth J, Birkeland KI, Fatima F, Grimnes JO, Gulseth HL, et al. Single-centre, triple-blinded, randomised, 1-year, parallel-group, superiority study to compare the effects of Roux-en-Y gastric bypass and sleeve gastrectomy on remission of type 2 diabetes and beta-cell function in subjects with morbid obesity: a protocol for the Obesity surgery in Tonsberg (Oseberg) study. BMJ Open. 2019;9(6):e024573. https://doi.org/10.1136/bmjopen-2018-024573.

    Article  PubMed  PubMed Central  Google Scholar 

  58. •• Reddy YNV, Anantha-Narayanan M, Obokata M, Koepp KE, Erwin P, Carter RE, et al. Hemodynamic effects of weight loss in obesity: a systematic review and meta-analysis. JACC Heart Fail. 2019;7(8):678–87. https://doi.org/10.1016/j.jchf.2019.04.019The systematic review and meta-analysis observed that intentional weight loss or obesity treatment using different interventions was associated with reductions in HR, mean arterial pressure, resting oxygen consumption, pulmonary capillary wedge pressure, mean pulmonary artery pressure (PAP), and exercise PAP.

    Article  PubMed  Google Scholar 

  59. Alexander JK, Peterson KL. Cardiovascular effects of weight reduction. Circulation. 1972;45(2):310–8. https://doi.org/10.1161/01.cir.45.2.310.

    Article  CAS  PubMed  Google Scholar 

  60. Backman L, Freyschuss U, Hallberg D, Melcher A. Reversibility of cardiovascular changes in extreme obesity. Effects of weight reduction through jejunoileostomy. Acta Med Scand. 1979;205(5):367–73. https://doi.org/10.1111/j.0954-6820.1979.tb06066.x.

    Article  CAS  PubMed  Google Scholar 

  61. Karimian S, Stein J, Bauer B, Teupe C. Impact of severe obesity and weight loss on systolic left ventricular function and morphology: assessment by 2-dimensional speckle-tracking echocardiography. J Obes. 2016;2016:2732613–6. https://doi.org/10.1155/2016/2732613.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kitzman DW, Brubaker P, Morgan T, Haykowsky M, Hundley G, Kraus WE, et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2016;315(1):36–46. https://doi.org/10.1001/jama.2015.17346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Haufe S, Utz W, Engeli S, Kast P, Bohnke J, Pofahl M, et al. Left ventricular mass and function with reduced-fat or reduced-carbohydrate hypocaloric diets in overweight and obese subjects. Hypertension. 2012;59(1):70–5. https://doi.org/10.1161/HYPERTENSIONAHA.111.178616.

    Article  CAS  PubMed  Google Scholar 

  64. Facchini M, Malfatto G, Sala L, Silvestri G, Fontana P, Lafortuna C, et al. Changes of autonomic cardiac profile after a 3-week integrated body weight reduction program in severely obese patients. J Endocrinol Investig. 2003;26(2):138–42. https://doi.org/10.1007/BF03345142.

    Article  CAS  Google Scholar 

  65. Valezi AC, Machado VH. Morphofunctional evaluation of the heart of obese patients before and after bariatric surgery. Obes Surg. 2011;21(11):1693–7. https://doi.org/10.1007/s11695-011-0431-0.

    Article  PubMed  Google Scholar 

  66. Kindel TL, Strande JL. Bariatric surgery as a treatment for heart failure: review of the literature and potential mechanisms. Surg Obes Relat Dis. 2018;14(1):117–22. https://doi.org/10.1016/j.soard.2017.09.534.

    Article  PubMed  Google Scholar 

  67. Alpert MA, Omran J, Mehra A, Ardhanari S. Impact of obesity and weight loss on cardiac performance and morphology in adults. Prog Cardiovasc Dis. 2014;56(4):391–400. https://doi.org/10.1016/j.pcad.2013.09.003.

    Article  PubMed  Google Scholar 

  68. Kaltman AJ, Goldring RM. Role of circulatory congestion in the cardiorespiratory failure of obesity. Am J Med. 1976;60(5):645–53. https://doi.org/10.1016/0002-9343(76)90499-x.

    Article  CAS  PubMed  Google Scholar 

  69. Tuck ML, Sowers J, Dornfeld L, Kledzik G, Maxwell M. The effect of weight reduction on blood pressure, plasma renin activity, and plasma aldosterone levels in obese patients. N Engl J Med. 1981;304(16):930–3. https://doi.org/10.1056/NEJM198104163041602.

    Article  CAS  PubMed  Google Scholar 

  70. Harp JB, Henry SA, DiGirolamo M. Dietary weight loss decreases serum angiotensin-converting enzyme activity in obese adults. Obes Res. 2002;10(10):985–90. https://doi.org/10.1038/oby.2002.134.

    Article  CAS  PubMed  Google Scholar 

  71. Perego L, Pizzocri P, Corradi D, Maisano F, Paganelli M, Fiorina P, et al. Circulating leptin correlates with left ventricular mass in morbid (grade III) obesity before and after weight loss induced by bariatric surgery: a potential role for leptin in mediating human left ventricular hypertrophy. J Clin Endocrinol Metab. 2005;90(7):4087–93. https://doi.org/10.1210/jc.2004-1963.

    Article  CAS  PubMed  Google Scholar 

  72. Mostfa SA. Impact of obesity and surgical weight reduction on cardiac remodeling. Indian Heart J. 2018;70(Suppl 3):S224–S8. https://doi.org/10.1016/j.ihj.2018.01.012.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kardassis D, Bech-Hanssen O, Schonander M, Sjostrom L, Karason K. The influence of body composition, fat distribution, and sustained weight loss on left ventricular mass and geometry in obesity. Obesity (Silver Spring). 2012;20(3):605–11. https://doi.org/10.1038/oby.2011.101.

    Article  Google Scholar 

  74. Abed HS, Wittert GA, Leong DP, Shirazi MG, Bahrami B, Middeldorp ME, et al. Effect of weight reduction and cardiometabolic risk factor management on symptom burden and severity in patients with atrial fibrillation: a randomized clinical trial. JAMA. 2013;310(19):2050–60. https://doi.org/10.1001/jama.2013.280521.

    Article  CAS  PubMed  Google Scholar 

  75. Gaborit B, Jacquier A, Kober F, Abdesselam I, Cuisset T, Boullu-Ciocca S, et al. Effects of bariatric surgery on cardiac ectopic fat: lesser decrease in epicardial fat compared to visceral fat loss and no change in myocardial triglyceride content. J Am Coll Cardiol. 2012;60(15):1381–9. https://doi.org/10.1016/j.jacc.2012.06.016.

    Article  PubMed  Google Scholar 

  76. Aggarwal R, Harling L, Efthimiou E, Darzi A, Athanasiou T, Ashrafian H. The effects of bariatric surgery on cardiac structure and function: a systematic review of cardiac imaging outcomes. Obes Surg. 2016;26(5):1030–40. https://doi.org/10.1007/s11695-015-1866-5.

    Article  PubMed  Google Scholar 

  77. Abed HS, Nelson AJ, Richardson JD, Worthley SG, Vincent A, Wittert GA, et al. Impact of weight reduction on pericardial adipose tissue and cardiac structure in patients with atrial fibrillation. Am Heart J. 2015;169(5):655–62 e2. https://doi.org/10.1016/j.ahj.2015.02.008.

    Article  PubMed  Google Scholar 

  78. Mikhalkova D, Holman SR, Jiang H, Saghir M, Novak E, Coggan AR, et al. Bariatric surgery-induced cardiac and lipidomic changes in obesity-related heart failure with preserved ejection fraction. Obesity (Silver Spring). 2018;26(2):284–90. https://doi.org/10.1002/oby.22038.

    Article  CAS  Google Scholar 

  79. Alpert MA, Terry BE, Lambert CR, Kelly DL, Panayiotou H, Mukerji V, et al. Factors influencing left ventricular systolic function in nonhypertensive morbidly obese patients, and effect of weight loss induced by gastroplasty. Am J Cardiol. 1993;71(8):733–7. https://doi.org/10.1016/0002-9149(93)91019-e.

    Article  CAS  PubMed  Google Scholar 

  80. •• Berger S, Meyre P, Blum S, Aeschbacher S, Ruegg M, Briel M, et al. Bariatric surgery among patients with heart failure: a systematic review and meta-analysis. Open Heart. 2018;5(2):e000910. https://doi.org/10.1136/openhrt-2018-000910The systematic review showed bariatric surgery was associated with a reduction in readmission rate for HF exacerbation in pre-surgical HF patients.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Maniscalco M, Arciello A, Zedda A, Faraone S, Verde R, Giardiello C, et al. Right ventricular performance in severe obesity. Effect of weight loss. Eur J Clin Investig. 2007;37(4):270–5. https://doi.org/10.1111/j.1365-2362.2007.01783.x.

    Article  CAS  Google Scholar 

  82. Karimian S, Stein J, Bauer B, Teupe C. Improvement of impaired diastolic left ventricular function after diet-induced weight reduction in severe obesity. Diabetes Metab Syndr Obes. 2017;10:19–25. https://doi.org/10.2147/DMSO.S124541.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Omran J, Firwana B, Koerber S, Bostick B, Alpert MA. Effect of obesity and weight loss on ventricular repolarization: a systematic review and meta-analysis. Obes Rev. 2016;17(6):520–30. https://doi.org/10.1111/obr.12390.

    Article  CAS  PubMed  Google Scholar 

  84. Poirier P, Hernandez TL, Weil KM, Shepard TJ, Eckel RH. Impact of diet-induced weight loss on the cardiac autonomic nervous system in severe obesity. Obes Res. 2003;11(9):1040–7. https://doi.org/10.1038/oby.2003.143.

    Article  PubMed  Google Scholar 

  85. Shirazi LF, Bissett J, Romeo F, Mehta JL. Role of inflammation in heart failure. Curr Atheroscler Rep. 2017;19(6):27. https://doi.org/10.1007/s11883-017-0660-3.

    Article  CAS  PubMed  Google Scholar 

  86. Bianchi VE. Weight loss is a critical factor to reduce inflammation. Clin Nutr ESPEN. 2018;28:21–35. https://doi.org/10.1016/j.clnesp.2018.08.007.

    Article  PubMed  Google Scholar 

  87. Algahim MF, Sen S, Taegtmeyer H. Bariatric surgery to unload the stressed heart: a metabolic hypothesis. Am J Physiol Heart Circ Physiol. 2012;302(8):H1539–45. https://doi.org/10.1152/ajpheart.00626.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Falken Y, Hellstrom PM, Holst JJ, Naslund E. Changes in glucose homeostasis after Roux-en-Y gastric bypass surgery for obesity at day three, two months, and one year after surgery: role of gut peptides. J Clin Endocrinol Metab. 2011;96(7):2227–35. https://doi.org/10.1210/jc.2010-2876.

    Article  CAS  PubMed  Google Scholar 

  89. Ulker I, Yildiran H. The effects of bariatric surgery on gut microbiota in patients with obesity: a review of the literature. Biosci Microbiota Food Health. 2019;38(1):3–9. https://doi.org/10.12938/bmfh.18-018.

    Article  CAS  PubMed  Google Scholar 

  90. Perugini RA, Malkani S. Remission of type 2 diabetes mellitus following bariatric surgery: review of mechanisms and presentation of the concept of ‘reversibility’. Curr Opin Endocrinol Diabetes Obes. 2011;18(2):119–28. https://doi.org/10.1097/MED.0b013e3283446c1f.

    Article  PubMed  Google Scholar 

  91. Laferrere B, Teixeira J, McGinty J, Tran H, Egger JR, Colarusso A, et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008;93(7):2479–85. https://doi.org/10.1210/jc.2007-2851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 2004;109(8):962–5. https://doi.org/10.1161/01.CIR.0000120505.91348.58.

    Article  CAS  PubMed  Google Scholar 

  93. Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005;54(1):146–51. https://doi.org/10.2337/diabetes.54.1.146.

    Article  CAS  PubMed  Google Scholar 

  94. Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail. 2006;12(9):694–9. https://doi.org/10.1016/j.cardfail.2006.08.211.

    Article  CAS  PubMed  Google Scholar 

  95. Abu-Gazala S, Horwitz E, Ben-Haroush SR, Bardugo A, Israeli H, Hija A, et al. Sleeve gastrectomy improves glycemia independent of weight loss by restoring hepatic insulin sensitivity. Diabetes. 2018;67(6):1079–85. https://doi.org/10.2337/db17-1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Douros JD, Niu J, Sdao S, Gregg T, Fisher-Wellman K, Bharadwaj M, et al. Sleeve gastrectomy rapidly enhances islet function independently of body weight. JCI Insight. 2019;4(6). https://doi.org/10.1172/jci.insight.126688.

  97. Kitai T, Tang WHW. Gut microbiota in cardiovascular disease and heart failure. Clin Sci (Lond). 2018;132(1):85–91. https://doi.org/10.1042/CS20171090.

    Article  Google Scholar 

  98. Palleja A, Kashani A, Allin KH, Nielsen T, Zhang C, Li Y, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med. 2016;8(1):67. https://doi.org/10.1186/s13073-016-0312-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Guo Y, Liu CQ, Shan CX, Chen Y, Li HH, Huang ZP et al. (2017) Gut microbiota after Roux-en-Y gastric bypass and sleeve gastrectomy in a diabetic rat model: increased diversity and associations of discriminant genera with metabolic changes. Diabetes Metab Res Rev. 33(3). doi:https://doi.org/10.1002/dmrr.2857

  100. Niedziela JT, Hudzik B, Strojek K, Polonski L, Gasior M, Rozentryt P. Weight loss in heart failure is associated with increased mortality only in non-obese patients without diabetes. J Cachexia Sarcopenia Muscle. 2019;10(6):1307–15. https://doi.org/10.1002/jcsm.12471.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zamora E, Diez-Lopez C, Lupon J, de Antonio M, Domingo M, Santesmases J, et al. Weight loss in obese patients with heart failure. J Am Heart Assoc. 2016;5(3):e002468. https://doi.org/10.1161/JAHA.115.002468.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Motie M, Evangelista LS, Lombardo D, Hoi J, Horwich TB, Hamilton M, et al. Effect of weight loss on renal function in overweight and obese patients with heart failure. Diabetes Metab Syndr. 2017;11(2):95–8. https://doi.org/10.1016/j.dsx.2016.06.026.

    Article  PubMed  Google Scholar 

  103. Samaras K, Connolly SM, Lord RV, Macdonald P, Hayward CS. Take heart: bariatric surgery in obese patients with severe heart failure. Two case reports. Heart Lung Circ. 2012;21(12):847–9. https://doi.org/10.1016/j.hlc.2012.05.783.

    Article  CAS  PubMed  Google Scholar 

  104. Chaudhry UI, Kanji A, Sai-Sudhakar CB, Higgins RS, Needleman BJ. Laparoscopic sleeve gastrectomy in morbidly obese patients with end-stage heart failure and left ventricular assist device: medium-term results. Surg Obes Relat Dis. 2015;11(1):88–93. https://doi.org/10.1016/j.soard.2014.04.003.

    Article  PubMed  Google Scholar 

  105. Evangelista LS, Doering LV, Lennie T, Moser DK, Hamilton MA, Fonarow GC, et al. Usefulness of a home-based exercise program for overweight and obese patients with advanced heart failure. Am J Cardiol. 2006;97(6):886–90. https://doi.org/10.1016/j.amjcard.2005.10.025.

    Article  PubMed  Google Scholar 

  106. Mariotti R, Castrogiovanni F, Canale ML, Borelli G, Rondinini L. Weight loss and quality of life in chronic heart failure patients. J Cardiovasc Med (Hagerstown). 2008;9(6):576–80. https://doi.org/10.2459/JCM.0b013e3282f2de13.

    Article  Google Scholar 

  107. Evangelista LS, Heber D, Li Z, Bowerman S, Hamilton MA, Fonarow GC. Reduced body weight and adiposity with a high-protein diet improves functional status, lipid profiles, glycemic control, and quality of life in patients with heart failure: a feasibility study. J Cardiovasc Nurs. 2009;24(3):207–15. https://doi.org/10.1097/JCN.0b013e31819846b9.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Pritchett AM, Deswal A, Aguilar D, Foreyt JP, Chan W, Mann DL, et al. Lifestyle modification with diet and exercise in obese patients with heart failure-a pilot study. J Obes Weight Loss Ther. 2012;2(2):1–8. https://doi.org/10.4172/2165-7904.1000118.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Sharma A, Ambrosy AP, DeVore AD, Margulies KB, McNulty SE, Mentz RJ, et al. Liraglutide and weight loss among patients with advanced heart failure and a reduced ejection fraction: insights from the FIGHT trial. ESC Heart Fail. 2018;5(6):1035–43. https://doi.org/10.1002/ehf2.12334.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22. https://doi.org/10.1056/NEJMoa1603827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jorsal A, Kistorp C, Holmager P, Tougaard RS, Nielsen R, Hanselmann A, et al. Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)-a multicentre, double-blind, randomised, placebo-controlled trial. Eur J Heart Fail. 2017;19(1):69–77. https://doi.org/10.1002/ejhf.657.

    Article  CAS  PubMed  Google Scholar 

  112. Margulies KB, Hernandez AF, Redfield MM, Givertz MM, Oliveira GH, Cole R, et al. Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA. 2016;316(5):500–8. https://doi.org/10.1001/jama.2016.10260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Beck-da-Silva L, Higginson L, Fraser M, Williams K, Haddad H. Effect of Orlistat in obese patients with heart failure: a pilot study. Congest Heart Fail. 2005;11(3):118–23. https://doi.org/10.1111/j.1527-5299.2005.03827.x.

    Article  CAS  PubMed  Google Scholar 

  114. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370(15):1383–92. https://doi.org/10.1056/NEJMoa1313731.

    Article  CAS  PubMed  Google Scholar 

  115. Olivier A, Pitt B, Girerd N, Lamiral Z, Machu JL, McMurray JJV, et al. Effect of eplerenone in patients with heart failure and reduced ejection fraction: potential effect modification by abdominal obesity. Insight from the EMPHASIS-HF trial. Eur J Heart Fail. 2017;19(9):1186–97. https://doi.org/10.1002/ejhf.792.

    Article  CAS  PubMed  Google Scholar 

  116. Pereira MJ, Eriksson JW. Emerging role of SGLT-2 inhibitors for the treatment of obesity. Drugs. 2019;79(3):219–30. https://doi.org/10.1007/s40265-019-1057-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. •• McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in Patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008. https://doi.org/10.1056/NEJMoa1911303The randomized controlled trial demonstrated a lower risk of worsening HF and death from cardiovascular causes among patients with HFrEF regardless of DM status in patients treated with dapagliflozin compared with placebo, and the more favorable outcomes seem to be in patients with BMI ≥ 30 kg/m2.

    Article  CAS  PubMed  Google Scholar 

  118. EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Preserved Ejection Fraction (EMPEROR-Preserved). ClinicalTrials.gov Identifier: NCT03057951

  119. DETERMINE-preserved-dapagliflozin effect on exercise capacity using a 6-minute walk test in patients with heart failure with preserved ejection fraction. ClinicalTrials.gov Identifier: NCT03877224

  120. Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation. 2014;129(25 Suppl 2):S102–38. https://doi.org/10.1161/01.cir.0000437739.71477.ee.

    Article  PubMed  Google Scholar 

  121. Garvey WT, Mechanick JI, Brett EM, Garber AJ, Hurley DL, Jastreboff AM, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Comprehensive Clinical Practice Guidelines for medical care of patients with obesity. Endocr Pract. 2016;22(Suppl 3):1–203. https://doi.org/10.4158/EP161365.GL.

    Article  PubMed  Google Scholar 

  122. Sarabu N. Weight and metabolic outcomes 12 years after gastric bypass. N Engl J Med. 2018;378(1):93–4. https://doi.org/10.1056/NEJMc1714001.

    Article  PubMed  Google Scholar 

  123. Alsabrook GD, Goodman HR, Alexander JW. Gastric bypass for morbidly obese patients with established cardiac disease. Obes Surg. 2006;16(10):1272–7. https://doi.org/10.1381/096089206778663779.

    Article  PubMed  Google Scholar 

  124. Zuber M, Kaeslin T, Studer T, Erne P. Weight loss of 146 kg with diet and reversal of severe congestive heart failure in a young, morbidly obese patient. Am J Cardiol. 1999;84(8):955–6, A8. https://doi.org/10.1016/s0002-9149(99)00479-8.

    Article  CAS  PubMed  Google Scholar 

  125. Hawkins RB, Go K, Raymond SL, Ayzengart A, Friedman J. Laparoscopic sleeve gastrectomy in patients with heart failure and left ventricular assist devices as a bridge to transplant. Surg Obes Relat Dis. 2018;14(9):1269–73. https://doi.org/10.1016/j.soard.2018.04.005The observational study showed that bariatric surgery using laparoscopic sleeve gastrectomy in advanced HF patients with LVAD support is a safe and effective way to lower BMI to become eligible for successful cardiac transplantation.

    Article  PubMed  Google Scholar 

  126. McCloskey CA, Ramani GV, Mathier MA, Schauer PR, Eid GM, Mattar SG, et al. Bariatric surgery improves cardiac function in morbidly obese patients with severe cardiomyopathy. Surg Obes Relat Dis. 2007;3(5):503–7. https://doi.org/10.1016/j.soard.2007.05.006.

    Article  CAS  PubMed  Google Scholar 

  127. Vest AR, Patel P, Schauer PR, Satava ME, Cavalcante JL, Brethauer S, et al. Clinical and echocardiographic outcomes after bariatric surgery in obese patients with left ventricular systolic dysfunction. Circ Heart Fail. 2016;9(3):e002260. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002260.

    Article  PubMed  Google Scholar 

  128. •• Aleassa EM, Khorgami Z, Kindel TL, Tu C, Tang WHW, Schauer PR, et al. Impact of bariatric surgery on heart failure mortality. Surg Obes Relat Dis. 2019;15(7):1189–96. https://doi.org/10.1016/j.soard.2019.03.021The retrospective study observed an approximate 50% reduction in in-hospital mortality and a reduced length of hospital stay in patients with HF admission who had prior bariatric surgery compared to a control group with comparable BMI.

    Article  PubMed  Google Scholar 

  129. Mehra MR, Canter CE, Hannan MM, Semigran MJ, Uber PA, Baran DA, et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: a 10-year update. J Heart Lung Transplant. 2016;35(1):1–23. https://doi.org/10.1016/j.healun.2015.10.023.

    Article  PubMed  Google Scholar 

  130. • Zenilman A, Pechman D, Moran-Atkin E, Choi J, Camacho D. Bariatric surgery in patients with left ventricular assist devices: a safe and effective method of weight loss as a gateway to heart transplantation. Surg Obes Relat Dis. 2019;15(10):1780–4. https://doi.org/10.1016/j.soard.2019.08.003Bariatric surgery in advanced HF with LVAD support has been demonstrated as a bridge to cardiac transplantation without significant adverse outcomes.

    Article  PubMed  Google Scholar 

  131. Greene J, Tran T,Shope T Sleeve gastrectomy and left ventricular assist device for heart transplant. JSLS. 2017;21(3). doi:https://doi.org/10.4293/JSLS.2017.00049.

  132. Wikiel KJ, McCloskey CA, Ramanathan RC. Bariatric surgery: a safe and effective conduit to cardiac transplantation. Surg Obes Relat Dis. 2014;10(3):479–84. https://doi.org/10.1016/j.soard.2013.11.002.

    Article  PubMed  Google Scholar 

  133. • Punchai S, Nor Hanipah Z, Sharma G, Aminian A, Steckner K, Cywinski J, et al. Laparoscopic sleeve gastrectomy in heart failure patients with left ventricular assist device. Obes Surg. 2019;29(4):1122–9. https://doi.org/10.1007/s11695-018-3570-8Bariatric surgery in advanced HF patients with LVAD support showed safety, was associated with improved functional status, and leads to successful cardiac transplantation.

    Article  PubMed  Google Scholar 

  134. Lim CP, Fisher OM, Falkenback D, Boyd D, Hayward CS, Keogh A, et al. Bariatric surgery provides a “bridge to transplant” for morbidly obese patients with advanced heart failure and may obviate the need for transplantation. Obes Surg. 2016;26(3):486–93. https://doi.org/10.1007/s11695-015-1789-1.

    Article  PubMed  Google Scholar 

  135. Leviner DB, Keidar A, Ben-Gal T, Medalion B. Cardiac function recovery following LVAD implantation and bariatric surgery in a morbidly obese patient. J Card Surg. 2014;29(5):740–2. https://doi.org/10.1111/jocs.12404.

    Article  PubMed  Google Scholar 

  136. • Tsamalaidze L, Elli EF. Bariatric surgery is gaining ground as treatment of obesity after heart transplantation: report of two cases. Obes Surg. 2017;27(11):3064–7. https://doi.org/10.1007/s11695-017-2908-yThese case reports show the safety and feasibility of bariatric surgery using robotic-assisted Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy in patients after cardiac transplantation and the associated improvement in QOL.

    Article  PubMed  Google Scholar 

Download references

Funding

Dr. Tang is partially supported by grants from the National Institutes of Health and the Office of Dietary Supplements (R01HL103931, R01DK106000, R01HL126827).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Wilson Tang.

Ethics declarations

Conflict of Interest

Thida Tabucanon and Jennifer Wilcox each declare no potential conflicts of interest. W. H. Wilson Tang is a consultant for Sequna Medical A.G. and Owkin Inc, and has received honorarium from Springer Nature for authorship/editorship, all unrelated to the contents of this paper.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabucanon, T., Wilcox, J. & Tang, W.H.W. Does Weight Loss Improve Clinical Outcomes in Overweight and Obese Patients with Heart Failure?. Curr Diab Rep 20, 75 (2020). https://doi.org/10.1007/s11892-020-01367-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11892-020-01367-z

Keywords

Navigation