Skip to main content
Log in

Temperature Dependences of Photodissociation Cross Sections in Krypton Plasma

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The features of the photodissociation spectra of molecular \({\text{Kr}}_{2}^{ + }\) ions are studied in a wide range of gas temperatures. It is found that an increase in the gas temperature leads to a significant change in the frequency dependence of the photodissociation cross sections. A simple physical explanation of the temperature dependence of the cross sections is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. G. N. Gerasimov, “Optical Spectra of Binary Rare-Gas Mixtures,” Phys. Usp. 47, 149 (2004). https://doi.org/10.1070/PU2004v047n02ABEH001681

    Article  ADS  Google Scholar 

  2. A. Morozov, T. Heindl, R. Krücken, A. Ulrich, and J. Wieser, “Conversion Efficiencies of Electron Beam Energy to Vacuum Ultraviolet Light for Ne, Ar, Kr, and Xe Excited with Continuous Electron Beams,” J. Appl. Phys. 103, 103301 (2008). https://doi.org/10.1063/1.2931000

    Article  ADS  Google Scholar 

  3. M. I. Lomaev, E. A. Sosnin, and V. F. Tarasenko, “Excilamps and their Applications,” Prog. Quantum. Electron. 36, 51 (2012). https://doi.org/10.1016/j.pquantelec.2012.03.003

    Article  ADS  Google Scholar 

  4. K. S. Gochelashvili, A. V. Dem’yanov, O. N. Evdokimova, I. V. Kochetov, and G. F. Makarenko, “Generation of VUV Radiation in Lyman and Werner Bands of Pulsed Space Discharge in Hydrogen Mixtures with Helium,” Bull. Leb. Phys. Inst. 40, 137 (2013). https://doi.org/10.3103/S1068335613060018

    Article  Google Scholar 

  5. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasmas (Consultants Bureau, New York, 1987).

    Book  Google Scholar 

  6. V. Alvin Shubert, M. Rednic, and S. T. Pratt, “Predissociation and Dissociative Ionization of Rydberg States of Xe2 and the Photodissociation of \({\text{Xe}}_{2}^{ + }\),” J. Chem. Phys. 132, 124108 (2010). https://doi.org/10.1063/1.3356040

    Article  ADS  Google Scholar 

  7. O. Zehnder and F. Merkt, “The Low-Lying Electronic States of ArXe+ and their Potential Energy Functions,” J. Chem. Phys. 128, 014306 (2008). https://doi.org/10.1063/1.2815801

    Article  ADS  Google Scholar 

  8. C. Zhang, T. Feng, N. Raabe, and H. Rottke, “Strong-Field Ionization of Xenon Dimers: The Effect of Two-Equivalent-Center Interference and of Driving Ionic Transitions,” Phys. Rev. A 97, 023417 (2018). https://doi.org/10.1103/PhysRevA.97.023417

    Article  ADS  Google Scholar 

  9. Y.-N. Liang, F. Wang, and J. Guo, “Theoretical Study on Low-Lying Electronic States of \({\text{Kr}}_{2}^{ + }\), \({\text{Xe}}_{2}^{ + }\), and \({\text{Rn}}_{2}^{ + }\),” J. Chem. Phys. 138, 094319 (2013). https://doi.org/10.1063/1.4792435

    Article  ADS  Google Scholar 

  10. V. S. Lebedev and L. P. Presnyakov, “Photodissociation from a Manifold of Rovibrational States and Free—Free Absorption by a Diatomic Molecule,” J. Phys. B: At. Mol. Opt. Phys. 35, 4347 (2002). https://doi.org/10.1088/0953-4075/35/21/303

    Article  ADS  Google Scholar 

  11. O. Zehnder, R. Mastalerz, M. Reiher, F. Merkt, and R. A. Dressler, “On the R-Dependence of the Spin—Orbit Coupling Constant: Potential Energy Functions of \({\text{Xe}}_{2}^{ + }\) by High-Resolution Photoelectron Spectroscopy and ab Initio Quantum Chemistry,” J. Chem. Phys. 128, 234306 (2008). https://doi.org/10.1063/1.2937133

    Article  ADS  Google Scholar 

  12. V. S. Lebedev, L. P. Presnyakov, and I. I. Sobel’man, “Radiative Transitions in the Molecular \({\text{H}}_{2}^{ + }\) Ion,” Phys.-Usp. 46, 473 (2003). https://doi.org/10.1070/PU2003v046n05ABEH001334

    Article  Google Scholar 

  13. D. R. Bates, “Rate of Formation of Molecules by Radiative Association,” Mon. Not. R. Astron. Soc. 111, 303 (1951). https://doi.org/10.1093/mnras/111.3.303

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. D. R. Bates, “Absorption of Radiation by an Atmosphere of H, H+, and \({\text{H}}_{2}^{{\text{ + }}}\) — Semi-Classical Treatment,” Mon. Not. R. Astron. Soc. 112, 40 (1952). https://doi.org/10.1093/mnras/112.1.40

    Article  ADS  Google Scholar 

  15. F. Von Busch and G. H. Dunn, “Photodissociation of \({\text{H}}_{2}^{ + }\) and \({\text{D}}_{2}^{ + }\): Experiment,” Phys. Rev. A 5, 1726 (1972). https://doi.org/10.1103/PhysRevA.5.1726

    Article  ADS  Google Scholar 

  16. A. A. Mihajlov, M. S. Dimitrijević, and Lj. M. Ignatović, “The Contribution of Ion—Atom Radiative Collisions to the Opacity of the Solar Atmosphere,” Astron. Astrophys. 276, 187 (1993).

    ADS  Google Scholar 

  17. P. C. Stancil, “Continuous Absorption by \({\text{He}}_{2}^{ + }\) and \({\text{H}}_{2}^{ + }\) in Cool White Dwarfs,” Astrophys. J. 430, 360 (1994). https://doi.org/10.1086/174411

    Article  ADS  Google Scholar 

  18. V. S. Lebedev, L. P. Presnyakov, and I. I. Sobelman, “Light Absorption in Hydrogen Plasma on the Bound-Free and Free-Free Transitions of the H–H+ System,” JETP Lett. 72, 178 (2000). https://doi.org/10.1134/1.1320107

    Article  ADS  Google Scholar 

  19. V. S. Lebedev, L. P. Presnyakov, and I. I. Sobel’man, “Photodissociative Absorption by \({\text{H}}_{2}^{ + }\) in the Solar Photosphere,” Astron. Rep. 44, 338 (2000). https://doi.org/10.1134/1.163856

    Article  ADS  Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Pergamon, Oxford, 1985).

    MATH  Google Scholar 

  21. V. S. Lebedev, Collision Processes Involving Highly Excited Atoms and Neutral Particles (Cambridge Sci. Publ., Cambridge, 2004).

    Google Scholar 

  22. R. Mastalerz, O. Zehnder, M. Reiher, and F. Merkt, Spin—Orbit Coupling and Potential Energy Functions of \({\text{Ar}}_{2}^{ + }\) and \({\text{Kr}}_{2}^{ + }\) by High-Resolution Photoelectron Spectroscopy and ab Initio Quantum Chemistry,” J. Chem. Theory Comput. 8, 3671 (2012). https://doi.org/10.1021/ct300078m

    Article  Google Scholar 

  23. L. C. Lee and G. P. Smith, “Photodissociation Cross Sections of \({\text{Ne}}_{2}^{ + }\), \({\text{Ar}}_{2}^{ + }\), \({\text{Kr}}_{2}^{ + }\), and \({\text{Xe}}_{2}^{ + }\) from 3500 to 5400 Å,” Phys. Rev. A 19, 2329 (1979). https://doi.org/10.1103/PhysRevA.19.2329

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-79-30086.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Kislov.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kislov, K.S., Narits, A.A. & Lebedev, V.S. Temperature Dependences of Photodissociation Cross Sections in Krypton Plasma. Bull. Lebedev Phys. Inst. 47, 308–312 (2020). https://doi.org/10.3103/S1068335620100061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335620100061

Keywords:

Navigation