Skip to main content
Log in

Synthesis of Au@PANI nanocomposites by complexation method and their application as label-free chemo probe for detection of mercury ions

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

A novel optical probe consisting of Au@PANI (gold-polyaniline) nanocomposites was developed for detection of mercury ions (Hg(II)). The poly-dispersed Au@PANI nanocomposites were synthesized by complexation reaction method. Structural and functional properties of polymer nanocomposites were thoroughly studied. Au@PANI nanocomposites consist of nanorods and nanofibres with mean particle size 33.1 nm. Au@PANI nanocomposites consist of face-centred cubic crystal structure with average crystallite size of 19.1 nm. Raman spectroscopy was used in sensitive and selective detection of Hg(II) ions in dynamic range of 0.01–0.1 ppm with limit of detection of 0.014 ppm. Au@PANI nanocomposite sensor for Hg(II) ions has shown some sublime results in pH range 3–5. Au@PANI-based sensing probe can be beneficial for Hg(II) ions detection in highly sensitive biological, chemical and environmental analysis. Our sensing probe has shown good reproducibility and all recorded observations revealed that sensing probe consisting of Au@PANI nanocomposites is well suited for detection of Hg(II) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Rajasudha G, Shankar H, Thangadurai P, Boukos N, Narayanan V and Stephen A 2010 Ionics 16 839

    CAS  Google Scholar 

  2. Ramesan M T 2012 Polym. Compos. 33 2169

    CAS  Google Scholar 

  3. Guo Z, Pereira T, Choi O, Wang Y and Hahn H T 2006 J. Mater. Chem. 16 2800

    CAS  Google Scholar 

  4. Caseri W R 2006 Mater. Sci. Technol. 22 807

    CAS  Google Scholar 

  5. Zare Y 2015 Compos. B Eng. 73 111

    CAS  Google Scholar 

  6. Stejskal J and Gilbert R G 2002 Pure Appl. Chem. 74 857

    CAS  Google Scholar 

  7. Joseph N, Singh S K, Sirugudu R K, Murthy V R K, Ananthakumar S and Sebastian M T 2013 Mater. Res. Bull. 48 1681

    CAS  Google Scholar 

  8. Lu Z, Dai W, Liu B, Mo G, Zhang J, Ye J et al 2018 J. Colloid Interface Sci. 525 86

    CAS  Google Scholar 

  9. Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668

    CAS  Google Scholar 

  10. García-Ruiz A, Crespo J, López-de-Luzuriaga J M, Olmos M E, Monge M, Rodríguez-Álfaro M P et al 2015 Food Control 50 613

    Google Scholar 

  11. Sau T K, Rogach A L, Jäckel F, Klar T A and Feldmann J 2010 Adv. Mater. 22 1805

    CAS  Google Scholar 

  12. Ramos J C, Ledezma A, Arias E, Moggio I, Martínez C A and Castillon F 2010 Vacuum 84 1244

    CAS  Google Scholar 

  13. Chang J Y, Godovsky D Y, Han M J, Hassan C M, Kim J, Lee B et al (eds) 2000 Biopolymers·PVA hydrogels anionic polymerisation nanocomposites (Berlin: Springer) vol 153

    Google Scholar 

  14. March G, Nguyen T D and Piro B 2015 Biosensors 5 241

    Google Scholar 

  15. Kudo A and Miyahara S 1991 Water Sci. Technol. 23 283

    CAS  Google Scholar 

  16. Oliver L and Rodhe H 1985 Tellus B 37 136

    Google Scholar 

  17. Loux N T 1998 Chem. Spec. Bioavailab. 10 127

    CAS  Google Scholar 

  18. Nriagu J O 1989 Nature 338 47

    CAS  Google Scholar 

  19. Maurice-Bourgoin L, Guyot J L, Seyler P, Quintanilla J and Courau P 1997 Fifth IAHS symposium p 85

  20. Camargo J A 2002 Chemosphere 48 51

    CAS  Google Scholar 

  21. Pirrone N, Keeler G J and Nriagu J O 1996 Atmos. Environ. 30 2981

    CAS  Google Scholar 

  22. Pirrone N, Costa P, Pacyna J M and Ferrara R 2001 Atmos. Environ. 35 2997

    CAS  Google Scholar 

  23. Kumar M and Puri A 2012 Indian J. Occup. Environ. Med. 16 40

    Google Scholar 

  24. Srivastava R C 2008 Guidance and Awareness raising materials under new UNEP mercury Programs

  25. Revis N W, Osborne T R, Holdsworth G and Hadden C 1989 Water Air Soil Pollut. 45 105

    CAS  Google Scholar 

  26. Wang X, Shen Y, Xie A, Li S, Cai Y, Wang Y et al 2011 Biosens. Bioelectron 26 3063

    CAS  Google Scholar 

  27. Cheng Y, Li J, Deng S and Sun F 2019 Compos. Commun. 13 75

    Google Scholar 

  28. Kudelski A 2008 Talanta 76 1

    CAS  Google Scholar 

  29. Hunter G W, Akbar S, Bhansali S, Daniele M, Erb P D, Johnson K et al 2020 J. Electrochem. Soc. 167 037570

    CAS  Google Scholar 

  30. Viswanathan P, Muralidaran Y and Ragavan G 2017 Nanostructures for oral medicine (Elsevier, Amsterdam) p 173

    Google Scholar 

  31. Mathew M, Sureshkumar S and Sandhyarani N 2012 Colloids Surf. B 93 143

    CAS  Google Scholar 

  32. Ruecha N, Rodthongkum N, Cate D M, Volckens J, Chailapakul O and Henry C S 2015 Anal. Chim. Acta 874 40

    CAS  Google Scholar 

  33. Yang Y, Kang M, Fang S, Wang M, He L, Zhao J et al 2015 Sens. Actuators B Chem. 214 63

    CAS  Google Scholar 

  34. Abdulla S, Dhakshanamoorthi J, Dinesh V P and Pullithadathil B 2015 J. Biosens. Bioelectron. 6 1

    Google Scholar 

  35. Deshmukh M A, Patil H K, Bodkhe G A, Yasuzawa M, Koinkar P, Ramanaviciene A et al 2018 Sens. Actuators B Chem. 260 331

    CAS  Google Scholar 

  36. Deshmukh M A, Patil H K, Bodkhe G A, Yasuzawa M, Koinkar P, Ramanavicius A et al 2018 Colloid Surf. A 537 303

    CAS  Google Scholar 

  37. Sadeghi M M, Rad A S, Ardjmand M and Mirabi A 2018 Synth. Met. 245 1

    CAS  Google Scholar 

  38. Saikia A and Karak N 2018 Mater. Today Commun. 14 82

    CAS  Google Scholar 

  39. Anand P B, Hasna K, Anilkumar K M and Jayalekshmi S 2012 Polym. Int. 61 1733

    CAS  Google Scholar 

  40. Kabomo T M and Scurrell M S 2016 Polym. Adv. Technol. 27 1195

    CAS  Google Scholar 

  41. Wang S, Rogachev A A, Yarmolenko M A, Rogachev A V, Xiaohong J, Gaur M S et al 2018 Appl. Surf. Sci. 428 1070

    CAS  Google Scholar 

  42. Bogdanovic U, Pašti I, Ciric-Marjanovic G, Mitric M, Ahrenkiel S P and Vodnik V 2015 ACS Appl. Mater. Interfaces 7 28393

    CAS  Google Scholar 

  43. Wang X, Shen Y, Xie A and Chen S 2013 Mater. Chem. Phys. 140 487

    CAS  Google Scholar 

  44. Wu Y, Jiang T, Wu Z and Yu R 2018 Biosens. Bioelectron. 99 646

    CAS  Google Scholar 

  45. Dugandžić V, Kupfer S, Jahn M, Henkel T, Weber K, Cialla-May D et al 2019 Sens. Actuators B: Chem. 279 230

    Google Scholar 

  46. Lu Y, Zhong J, Yao G and Huang Q 2018 Sens. Actuators B: Chem. 258 365

    CAS  Google Scholar 

  47. Xu Z, Zhang L, Mei B, Tu J, Wang R, Chen M et al 2018 Coatings 8 394

    Google Scholar 

  48. Bao H, Fu H, Zhou L, Cai W and Zhang H 2020 Nanotechnology 31 155501

    CAS  Google Scholar 

  49. Liu Y, Wu Y, Guo X, Wen Y and Yang H 2019 Sens. Actuators B: Chem. 283 278

    CAS  Google Scholar 

  50. Sharma S, Jaiswal A and Uttam K N 2020 Anal. Lett. 1

Download references

Acknowledgements

We would like to acknowledge Prof. (Dr) Vinod Yadava (Director, National Institute of Technology, Hamirpur, India) for his consistent support throughout this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lovepreet Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 808 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, L., Singh, V. Synthesis of Au@PANI nanocomposites by complexation method and their application as label-free chemo probe for detection of mercury ions. Bull Mater Sci 43, 307 (2020). https://doi.org/10.1007/s12034-020-02300-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02300-6

Keywords

Navigation