Skip to main content
Log in

Fast inverse solver for identifying the diffusion coefficient in time-dependent problems using noisy data

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

We propose an efficient inverse solver for identifying the diffusion coefficient based on few random measurements which can be contaminated with noise. We focus mainly on problems involving solutions with steep heat gradients common with sudden changes in the temperature. Such steep gradients can be a major challenge for numerical solutions of the forward problem as they may involve intensive computations especially in the time domain. This intensity can easily render the computations prohibitive for the inverse problems that requires many repetitions of the forward solution. Compared to the literature, we propose to make such computations feasible by developing an iterative approach that is based on the partition of unity finite element method, hence, significantly reducing the computations intensity. The proposed approach inherits the flexibility of the finite element method in dealing with complicated geometries, which otherwise cannot be achieved using analytical solvers. The algorithm is evaluated using several test cases. The results show that the approach is robust and highly efficient even when the input data is contaminated with noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kaessmair, Stefan, Steinmann, Paul: Computational first-order homogenization in chemo-mechanics. Arch. Appl. Mech. 88(1–2), 271–286 (2018)

    Google Scholar 

  2. McRae, G.J., Goodin, W.R., Seinfeld, J.H.: Numerical solution of the atmospheric diffusion equation for chemically reacting flows. J. Comput. Phys. 45(1), 1–42 (1982)

    MathSciNet  MATH  Google Scholar 

  3. Kostrowicki, J., Scheraga, H.A.: Application of the diffusion equation method for global optimization to oligopeptides. J. Phys. Chem. 96(18), 7442–7449 (1992)

    Google Scholar 

  4. Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 511–518. ACM (2001)

  5. Klibanov, M.V.: Two classes of inverse problems for partial differential equations. Ann. N. Y. Acad. Sci. 661(1), 93–111 (1992)

    Google Scholar 

  6. Tadi, M., Nandakumaran, A.K., Sritharan, S.S.: An inverse problem for Helmholtz equation. Inverse Probl. Sci. Eng. 19(6), 839–854 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Cenesiz, Y., Kurt, A.: The solutions of time and space conformable fractional heat equations with conformable Fourier transform. Acta Univ. Sapientiae Math. 7(2), 130–140 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Zhu, S., Satravaha, P., Lu, X.: Solving linear diffusion equations with the dual reciprocity method in Laplace space. Eng. Anal. Bound. Elem. 13(1), 1–10 (1994)

    Google Scholar 

  9. Qu, C., Zhang, S., Liu, R.: Separation of variables and exact solutions to quasilinear diffusion equations with nonlinear source. Phys. D Nonlinear Phenom. 144(1), 97–123 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Jiang, J., Seaid, M., Mohamed, M.S., Li, H.: Inverse algorithm for real-time road roughness estimation for autonomous vehicles. Arch. Appl. Mech. 90, 1333–1348 (2020). https://doi.org/10.1007/s00419-020-01670-x

    Article  Google Scholar 

  11. Kaushik, A., Kumar, V., Vashishth, A.K.: An efficient mixed asymptotic-numerical scheme for singularly perturbed convection diffusion problems. Appl. Math. Comput. 218(17), 8645–8658 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Cardone, A., D’Ambrosio, R., Paternoster, B.: Exponentially fitted IMEX methods for advection-diffusion problems. J. Comput. Appl. Math. 316, 100–108 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Yang, Y., Knol, M.F., van Keulen, F., Ayas, C.: A semi-analytical thermal modelling approach for selective laser melting. Addit. Manuf. 21, 284–297 (2018)

    Google Scholar 

  14. Nouy, A., Clement, A., Schoefs, F., Moës, N.: An extended stochastic finite element method for solving stochastic partial differential equations on random domains. Comput. Methods Appl. Mech. Eng. 197(51), 4663–4682 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Melenk, J.M., Babuška, I.: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139(1–4), 289–314 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Laghrouche, O., Bettess, P.: Short wave modelling using special finite elements. J. Comput. Acoust 8(01), 189–210 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Mohamed, M.S., Seaid, M., Trevelyan, J., Laghrouche, O.: A partition of unity FEM for time-dependent diffusion problems using multiple enrichment functions. Int. J. Numer. Methods Eng. 93, 245–265 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Drolia, M., Mohamed, M.S., Laghrouche, O., Seaid, M., Trevelyan, J.: Enriched finite elements for initial-value problem of transverse electromagnetic waves in time domain. Comput. Struct. 182, 354–367 (2017)

    Google Scholar 

  19. Jiang, J., Mohamed, M.S., Seaid, M., Li, H.: Identifying the wavenumber for the inverse Helmholtz problem using an enriched finite element formulation. Comput. Methods Appl. Mech. Eng. 340, 615–629 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Van der Meer, F.P., Al-Khoury, R., Sluys, L.J.: Time-dependent shape functions for modeling highly transient geothermal systems. Int. J. Numer. Methods Eng. 77(2), 240–260 (2009)

    MathSciNet  MATH  Google Scholar 

  21. O’Hara, P., Duarte, C.A., Eason, T., Garzon, J.: Efficient analysis of transient heat transfer problems exhibiting sharp thermal gradients. Comput. Mech. 51(5), 743–764 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Shadi Mohamed, M., Seaid, M., Bouhamidi, A.: Iterative solvers for generalized finite element solution of boundary-value problems. Numer. Linear Algebra Appl. 25(6), e2205 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Malek, M., Izem, N., Mohamed, M.S., Seaid, M., Laghrouche, O.: A partition of unity finite element method for three-dimensional transient diffusion problems with sharp gradients. J. Comput. Phys. 396, 702–717 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Malek, M., Izem, N., Seaid, M., Shadi, M., Wakrim, M.M.: A partition of unity finite element method for nonlinear transient diffusion problems in heterogeneous materials. Comput. Appl. Math. 38(2), 31 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Malek, M., Izem, N., Shadi Mohamed, M., Seaid, M.: A three-dimensional enriched finite element method for nonlinear transient heat transfer in functionally graded materials. Int. J. Heat Mass Transf. 155, 119804 (2020)

    Google Scholar 

  26. Farhat, C., Kalashnikova, I., Tezaur, R.: A higher-order discontinuous enrichment method for the solution of high Péclet advection-diffusion problems on unstructured meshes. Int. J. Numer. Methods Eng. 81(5), 604–636 (2010)

    MATH  Google Scholar 

  27. Kalashnikova, I., Tezaur, R., Farhat, C.: A discontinuous enrichment method for variable-coefficient advection-diffusion at high Péclet number. Int. J. Numer. Methods Eng. 87(1–5), 309–335 (2011)

    MATH  Google Scholar 

  28. Borker, R., Farhat, Ch., Tezaur, R.: A discontinuous Galerkin method with Lagrange multipliers for spatially-dependent advection-diffusion problems. Comput. Methods Appl. Mech. Eng. 327, 93–117 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Richter, G.R.: An inverse problem for the steady state diffusion equation. SIAM J. Appl. Math. 41(2), 210–221 (1981)

    MathSciNet  MATH  Google Scholar 

  30. Cannon, J.R., DuChateau, P.: An inverse problem for a nonlinear diffusion equation. SIAM J. Appl. Math. 39(2), 272–289 (1980)

    MathSciNet  MATH  Google Scholar 

  31. Amirkhanov, I.V., Pavlušová, E., Pavluš, M., Puzynina, T.P., Puzynin, I.V., Sarhadov, I.: Numerical solution of an inverse diffusion problem for the moisture transfer coefficient in a porous material. Mater. Struct. 41(2), 335–344 (2008)

    Google Scholar 

  32. Huiping, L., Guoqun, Z., Shanting, N., Yiguo, L.: Inverse heat conduction analysis of quenching process using finite-element and optimization method. Finite Elements Anal. Des. 42(12), 1087–1096 (2006)

    Google Scholar 

  33. Davies, A.J., Christianson, D.B., Dixon, L.C.W., Roy, R., Van Der Zee, P.: Reverse differentiation and the inverse diffusion problem. Adv. Eng. Softw. 28(4), 217–221 (1997)

    Google Scholar 

  34. Shidfar, A., Pourgholi, R., Ebrahimi, M.: A numerical method for solving of a nonlinear inverse diffusion problem. Comput. Math. Appl. 52(6–7), 1021–1030 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Kocur, G.K., Harmanci, Y.E., Chatzi, E., Steeb, H., Markert, B.: Automated identification of the coefficient of restitution via bouncing ball measurement. Arch. Appl. Mech., pp. 1–14 (2020)

  36. Kunze, H., Torre, D.L.: An inverse problem for a 2-D system of steady-state reaction-diffusion equations on a perforated domain. In: AIP Conference Proceedings, volume 1798, p. 020089. AIP Publishing (2017)

  37. Jin, B., Rundell, W.: An inverse problem for a one-dimensional time-fractional diffusion problem. Inverse Probl. 28(7), 075010 (2012)

    MathSciNet  MATH  Google Scholar 

  38. Wang, Y., Hamad, A., Tadi, M.: Evaluation of a diffusion coefficient based on proper solution space. J. Therm. Sci. Eng. Appl. 11(1), 011017 (2019)

    Google Scholar 

  39. Sun, L., Yan, X., Wei, T.: Identification of time-dependent convection coefficient in a time-fractional diffusion equation. J. Comput. Appl. Math. 346, 505–517 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Alves, C.J.S., Colaço, M.J., Leitão, V.M.A., Martins, N.F.M., Orlande, H.R.B., Roberty, N.C.: Recovering the source term in a linear diffusion problem by the method of fundamental solutions. Inverse Probl. Sci. Eng. 16(8), 1005–1021 (2008)

    MathSciNet  MATH  Google Scholar 

  41. Wei, H., Chen, W., Sun, H., Li, X.: A coupled method for inverse source problem of spatial fractional anomalous diffusion equations. Inverse Probl. Sci. Eng. Former Inverse Probl. Eng. 18(7), 945–956 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, Z.Q., Wei, T.: Identifying an unknown source in time-fractional diffusion equation by a truncation method. Appl. Math. Comput. 219(11), 5972–5983 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Tuan, N.H., Nane, E.: Inverse source problem for time-fractional diffusion with discrete random noise. Stat. Probab. Lett. 120, 126–134 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Murio, D.A.: Stable numerical solution of a fractional-diffusion inverse heat conduction problem. Comput. Math. Appl. 53(10), 1492–1501 (2007)

    MathSciNet  MATH  Google Scholar 

  45. Rundell, W., Zhang, Z.: Recovering an unknown source in a fractional diffusion problem. J. Comput. Phys. 368, 299–314 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Patelli, E., Govers, Y., Broggi, M., Gomes, H.M., Link, M., Mottershead, J.E.: Sensitivity or Bayesian model updating: a comparison of techniques using the dlrairmod test data. Arch. Appl. Mech. 87(5), 905–925 (2017)

    Google Scholar 

  47. Mao, Y.M., Zhang, W.D., Ouyang, H., Lin, J.F.: Input force estimation accounting for modeling errors and noise in responses. Arch. Appl. Mech. 85(7), 909–919 (2015)

    Google Scholar 

  48. Miller, D.L., Smith, N.B., Bailey, M.R., Czarnota, G.J., Hynynen, K., Makin, I.R.S.: Bioeffects committee of the american institute of ultrasound in medicine. Overview of therapeutic ultrasound applications and safety considerations. J. Ultrasound Med. 31(4), 623–634 (2012)

    Google Scholar 

  49. Ohmoto, K., Yoshioka, N., Tomiyama, Y., Shibata, N., Kawase, T., Yoshida, K., Kuboki, M., Yamamoto, S.: Comparison of therapeutic effects between radiofrequency ablation and percutaneous microwave coagulation therapy for small hepatocellular carcinomas. J. Gastroenterol. Hepatol. 24(2), 223–227 (2009)

    Google Scholar 

  50. Kelley, C.T.: Iterative Methods for Optimization, number 18 in Frontiers in Applied Mathematics. SIAM, Philadelphia (1999)

    Google Scholar 

  51. Iqbal, M., Gimperlein, H., Mohamed, M.S., Laghrouche, O.: An a posteriori error estimate for the generalized finite element method for transient heat diffusion problems. Int. J. Numer. Methods Eng. 110(12), 1103–1118 (2017)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Our research is supported by National Natural Science Foundation of China, No.51775270, and Jiangsu Innovation Program for Graduate Education, No.KYLX16_0314. Financial support provided by the project of Qatar National Research Fund under the contract NPRP11S-1220- 170112 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shadi Mohamed.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Shadi Mohamed, M., Seaid, M. et al. Fast inverse solver for identifying the diffusion coefficient in time-dependent problems using noisy data. Arch Appl Mech 91, 1623–1639 (2021). https://doi.org/10.1007/s00419-020-01844-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-020-01844-7

Keywords

Navigation