Skip to main content
Log in

Generalized inverse-Gaussian frailty models with application to TARGET neuroblastoma data

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

A new class of survival frailty models based on the generalized inverse-Gaussian (GIG) distributions is proposed. We show that the GIG frailty models are flexible and mathematically convenient like the popular gamma frailty model. A piecewise-exponential baseline hazard function is employed, yielding flexibility for the proposed class. Although a closed-form observed log-likelihood function is available, simulation studies show that employing an EM-algorithm is advantageous concerning the direct maximization of this function. Further simulated results address the comparison of different methods for obtaining standard errors of the estimates and confidence intervals for the parameters. Additionally, the finite-sample behavior of the EM-estimators is investigated and the performance of the GIG models under misspecification assessed. We apply our methodology to a TARGET (Therapeutically Applicable Research to Generate Effective Treatments) data about the survival time of patients with neuroblastoma cancer and show some advantages of the GIG frailties over existing models in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrahantes, J. C., Burzykowski, T. (2005). A version of the EM algorithm for proportional hazard model with random effects. Biometrical Journal, 47, 847–862.

    Article  MathSciNet  MATH  Google Scholar 

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.

    Article  MathSciNet  MATH  Google Scholar 

  • Balakrishnan, N., Pal, S. (2016). Expectation maximization-based likelihood inference for flexible cure rate models with Weibull lifetimes. Statistical Methods in Medical Research, 25, 1535–1563.

    Article  MathSciNet  Google Scholar 

  • Balakrishnan, N., Peng, Y. (2006). Generalized gamma frailty model. Statistics in Medicine, 25, 2797–2816.

    Article  MathSciNet  Google Scholar 

  • Balan, T., Putter, H. (2019). frailtyEM: An R package for estimating semiparametric shared frailty models. Journal of Statistical Software, 90, 1–29.

    Article  Google Scholar 

  • Barndorff-Nielsen, O. E., Halgreen, C. (1977). Infinite divisibility of the Hyperbolic and generalized inverse Gaussian distribution. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 38, 309–312.

    Article  MathSciNet  MATH  Google Scholar 

  • Barreto-Souza, W., Mayrink, V. D. (2019). Semiparametric generalized exponential frailty model for clustered survival data. Annals of the Institute of Statistical Mathematics, 71, 679–701.

    Article  MathSciNet  MATH  Google Scholar 

  • Callegaro, A., Iacobelli, S. (2012). The Cox shared frailty model with log-skew-normal frailties. Statistical Modelling, 12, 399–418.

    Article  MathSciNet  MATH  Google Scholar 

  • Carroll, W. L. (2013). Safety in numbers: Hyperdiploidy and prognosis. Blood, 121, 2374–237.

    Article  Google Scholar 

  • Chen, P., Zhang, J., Zhang, R. (2013). Estimation of the accelerated failure time frailty model under generalized gamma frailty. Computational Statistics and Data Analysis, 62, 171–180.

    Article  MathSciNet  MATH  Google Scholar 

  • Clayton, D. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65, 141–151.

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, D. (1972). Regression models and life-tables. Journal of the Royal Statistical Society - Series B, 34, 187–220.

    MathSciNet  MATH  Google Scholar 

  • Crowder, M. (1989). A multivariate distribution with Weibull connections. Journal of the Royal Statistical Society - Series B, 51, 93–107.

    MathSciNet  MATH  Google Scholar 

  • Dastugue, N., Suciu, S., Plat, G., Speleman, F., Cave, H., Girard, S., Bakkus, M., Pages, M. P., Yakouben, K., Nelken, B., Uyttebroeck, A., Gervais, C., Lutz, P., Teixeira, M. R., Heimann, P., Ferster, A., Rohrlich, P., Collonge, M. A., Munzer, M., Luquet, I., Boutard, P., Sirvent, N., Karrasch, M., Bertrand, Y., Benoit, Y. (2013). Hyperdiploidy with 58–66 chromosomes in childhood B-acute lymphoblastic leukemia is highly curable: 58951 CLG-EORTC results. Blood, 121, 2415–2423.

    Article  Google Scholar 

  • Dempster, A. P., Laird, N. M., Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society - Series B, 39, 1–38.

    MathSciNet  MATH  Google Scholar 

  • Donovan, P., Cato, K., Legaie, R., Jayalath, R., Olsson, G., Hall, B., Olson, S., Boros, S., Reynolds, B., Harding, A. (2014). Hyperdiploid tumor cells increase phenotypic heterogeneity within Glioblastoma tumors. Molecular bioSystems, 10, 741–758.

    Article  Google Scholar 

  • Duchateau, L., Janssen, P. (2008). The Frailty Model. New York: Springer.

    MATH  Google Scholar 

  • Duchateau, L., Janssen, P., Lindsey, P., Legrand, C., Nguti, R., Silvester, R. (2002). The shared frailty model and the power for heterogeneity tests in multicenter trials. Computational Statistics and Data Analysis, 40(3), 603–620.

    Article  MathSciNet  MATH  Google Scholar 

  • Efron, B. (1979). Bootstrap methods: Another look at the Jackknife. The Annals of Statistics, 7, 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Emura, T., Nakatochi, M., Murotani, K., Rondeau, V. (2017). A joint frailty-copula model between tumour progression and death for meta-analysis. Statistical Methods in Medical Research, 26(6), 2649–2666.

    Article  MathSciNet  Google Scholar 

  • Emura, T., Matsui, S., Rondeau, V. (2019). Survival Analysis with Correlated Endpoints: Joint Frailty-Copula Models. JSS Research Series in Statistics. Singapore: Springer.

    Book  MATH  Google Scholar 

  • Enki, D. G., Noufaily, A., Farrington, P. (2014). A time-varying shared frailty model with application to infectious diseases. Annals of Applied Statistics, 8, 430–447.

    Article  MathSciNet  MATH  Google Scholar 

  • Farrington, C., Unkel, S., Anaya-Izquierdo, K. (2012). The relative frailty variance and shared frailty models. Journal of the Royal Statistical Society - Series B, 74, 673–696.

    Article  MathSciNet  MATH  Google Scholar 

  • Fletcher, R. (2000). Practical Methods of Optimization, 2nd ed., New York: Wiley.

    Book  MATH  Google Scholar 

  • Hanagal, D. D. (2019). Modeling Survival Data Using Frailty Models. Singapore: Springer.

    Book  MATH  Google Scholar 

  • Hirsch, K., Wienke, A. (2012). Software for semiparametric shared gamma and log-normal frailty models: an overview. Computer Methods and Programs in Biomedicine, 107(3), 582–597.

    Article  Google Scholar 

  • Hougaard, P. (1984). Life table methods for heterogeneous populations: Distributions describing the heterogeneity. Biometrika, 71, 75–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Hougaard, P. (1986). A class of multivariate failure time distributions. Biometrika, 73, 671–678.

    MathSciNet  MATH  Google Scholar 

  • Hougaard, P. (2000). Analysis of Multivariate Survival Data. New York: Springer.

    Book  MATH  Google Scholar 

  • Hougaard, P., Harvald, B., Holm, N. V. (1992). Measuring the similarities between the lifetimes of adult danish twins born between 1881–1930. Biometrika, 87, 17–24.

    Google Scholar 

  • Kaplan, E., Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53, 457–481.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, J. S., Proschan, F. (1991). Piecewise exponential estimation of the survival function. IEEE Translations on Reliability, 40, 134–139.

    Article  MATH  Google Scholar 

  • Klein, J. P. (1992). Semiparametric estimation of random effects using the Cox model based on the EM algorithm. Biometrics, 48, 795–806.

    Article  Google Scholar 

  • Lawless, J. F., Zhan, M. (1998). Analysis of interval-grouped recurrent event data using piecewise constant rate function. Canadian Journal of Statistics, 26, 549–565.

    Article  MATH  Google Scholar 

  • Leão, J., Leiva, V., Saulo, H., Tomazella, V. (2017). Birnbaum-Saunders frailty regression models: Diagnostics and application to medical data. Biometrical Journal, 59, 291–314.

    Article  MathSciNet  MATH  Google Scholar 

  • Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society - Series B, 44, 226–233.

    MathSciNet  MATH  Google Scholar 

  • McGilchrist, C. A., Aisbett, C. W. (1991). Regression with frailty in survival analysis. Biometrics, 47, 461–466.

    Article  Google Scholar 

  • Monaco, V., Gorfine, M., Hsu, L. (2018). General semiparametric shared frailty model estimation and simulation with frailtySurv. Journal of Statistical Software, 86, 1–42.

    Article  Google Scholar 

  • Oakes, D. (1982). A model for association in bivariate survival data. Journal of the Royal Statistical Society - Series B, 44, 414–422.

    MathSciNet  MATH  Google Scholar 

  • Oakes, D. (1986). Semiparametric inference in a model for association in bivariate survival data. Biometrika, 73, 353–361.

    MathSciNet  MATH  Google Scholar 

  • Peng, M., Xiang, L., Wang, S. (2018). Semiparametric regression analysis of clustered survival data with semi-competing risks. Computational Statistics and Data Analysis, 124, 53–70.

    Article  MathSciNet  MATH  Google Scholar 

  • Putter, H., van Houwelingen, H. C. (2015). Dynamic frailty models based on compound birth-death processes. Biostatistics, 16, 550–564.

    Article  MathSciNet  Google Scholar 

  • R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed Aug 2020.

  • Schneider, S., Demarqui, F. N., Colosimo, E. A., Mayrink, V. D. (2019). An approach to model clustered survival data with dependent censoring. Biometrical Journal, 62(1), 157–174.

    Article  MathSciNet  MATH  Google Scholar 

  • Therneau, T. (2015). A package for survival analysis in S. R package version 2.43.3. https://CRAN.R-project.org/package=survival. Accessed Aug 2019.

  • Therneau, T. M., Grambsch, P. M., Pankratz, V. S. (2003). Penalized survival models. Journal of Computational and Graphical Statistics, 12, 156–175.

    Article  MathSciNet  Google Scholar 

  • Vaupel, J. W., Manton, K. G., Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16, 439–454.

    Article  Google Scholar 

  • Vu, H. T. V., Knuiman, M. W. (2002). A hybrid ML-EM algorithm for calculation of maximum likelihood estimates in semiparametric shared frailty models. Computational Statistics and Data Analysis, 40(1), 173–187.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, H., Klein, J. P. (2012). Semiparametric estimation for the additive inverse Gaussian frailty model. Communications in Statistics - Theory and Methods, 41, 2269–2278.

    Article  MathSciNet  MATH  Google Scholar 

  • Wienke, A. (2011). Frailty models in survival analysis. New York: Chapman and Hall/CRC.

    Google Scholar 

  • Xiao, Y., Abrahamowicz, M. (2010). Bootstrap-based methods for estimating standard error Cox’s regression analyses of clustered event times. Statistics in Medicine, 29, 915–923.

    Article  MathSciNet  Google Scholar 

  • Yashin, A., Vaupel, J. W., Iachine, I. (1995). Correlated individual frailty: an advantageous approach to survival analysis of bivariate data. Mathematical Population Studies, 5, 145–159.

    Article  MATH  Google Scholar 

  • Yoshimoto, M., Toledo, S., Caran, E., Seixas, M., Lee, M., Abib, S., Vianna, S., Schettini, S., Andrade, J. (1999). MYCN gene amplification: Identification of cell populations containing double minutes and homogeneously staining regions in neuroblastoma tumors. The American Journal of Pathology, 155, 1439–1443.

    Article  Google Scholar 

  • Zeng, D., Lin, D. Y. (2006). Efficient estimation of semiparametric transformation models for counting processes. Biometrika, 93, 627–640.

    Article  MathSciNet  MATH  Google Scholar 

  • Zeng, D., Lin, D. Y. (2007). Maximum likelihood estimation in semiparametric regression models with censored data. Journal of the Royal Statistical Society - Series B, 69, 507–564.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the Associate Editor and two anonymous Referees for their insightful comments and suggestions that lead to a great improvement of the paper. We also thank the National Cancer Institute (Office of Cancer Genomics) for granting us permission to use the TARGET Neuroblastoma Clinical data for publication. W. Barreto-Souza would also like to acknowledge support for his research from the KAUST Research Fund, NIH 1R01EB028753-01, and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil, Grant number 305543/2018-0). Part of this work is from the Master’s Thesis of Luiza S.C. Piancastelli realized at the Department of Statistics of the Universidade Federal de Minas Gerais, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wagner Barreto-Souza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 170 KB)

Appendix

Appendix

1.1 A.1 Observed information matrix

Define \(c_i(\theta )=\displaystyle \sum _{j=1}^{n_i}H_0(t_{ij})e^{x_{ij}^\top \beta }\) and \(a_{irs}(\theta )=\displaystyle \sum _{j=1}^{n_i}H_0(t_{ij})e^{x_{ij}^\top \beta }x_{ijr}x_{ijs}\), for \(r,s=1,\ldots ,p\), \(\varDelta _i\equiv \varDelta _i(\theta )=\bigg \{\alpha ^{-1}\bigg (\alpha ^{-1}+2\displaystyle \sum _{j=1}^{n_i}H_0(t_{ij})e^{x_{ij}^\top \beta }\bigg )\bigg \}^{1/2}\), and \(\lambda _i^*=\lambda +\sum _{j=1}^{n_i}\delta _{ij}\), for \(i=1,\ldots ,m\). We have that the elements of the observed information matrix \(J_n(\theta _*)=-\partial ^2\ell (\theta )/\partial \theta _*\partial \theta _*^\top \) are given by

$$\begin{aligned} \dfrac{\partial ^2\ell (\theta )}{\partial \beta _r\beta _s}= & {} \dfrac{1}{\alpha ^2}\sum _{i=1}^m\dfrac{K''_{\lambda _i^*}(\varDelta _i)K_{\lambda _i^*}(\varDelta _i)\varDelta _i-K'_{\lambda _i^*}(\varDelta _i)[K'_{\lambda _i^*}(\varDelta _i)\varDelta _i+K_{\lambda _i^*}(\varDelta _i)]}{K_{\lambda _i^*}(\varDelta _i)^2\varDelta _i^3}a_{ir}(\theta )a_{is}(\theta )\\&+\dfrac{1}{\alpha }\sum _{i=1}^m\dfrac{K'_{\lambda _i^*}(\varDelta _i)}{K_{\lambda _i^*}(\varDelta _i)\varDelta _i}a_{irs}(\theta ) -\sum _{i=1}^m\dfrac{{\lambda _i^*}a_{irs}(\theta )}{\alpha ^{-1}+2c_i(\theta )}+2\sum _{i=1}^m\dfrac{{\lambda _i^*}a_{ir}(\theta )a_{is}(\theta )}{(\alpha ^{-1}+2c_i(\theta ))^2}, \\ \dfrac{\partial ^2\ell (\theta )}{\partial \beta _r\partial \alpha }= & {} -\dfrac{1}{\alpha ^2}\sum _{i=1}^m\dfrac{K'_{\lambda _i^*}(\varDelta _i)}{K_{\lambda _i^*}(\varDelta _i)\varDelta _i}a_{ir}(\theta )-\dfrac{1}{\alpha ^2}\sum _{i=1}^m\frac{{\lambda _i^*}a_{ir}(\theta )}{(\alpha ^{-1}+2c_i(\theta ))^{2}}\\&-\dfrac{1}{\alpha ^3}\sum _{i=1}^m\dfrac{K''_{\lambda _i^*}(\varDelta _i)K_{\lambda _i^*}(\varDelta _i)\varDelta _i-K'_{\lambda _i^*}(\varDelta _i)[K'_{\lambda _i^*}(\varDelta _i)\varDelta _i+K_{\lambda _i^*}(\varDelta _i)]}{K_{\lambda _i^*}(\varDelta _i)^2\varDelta ^3_i}\\&\quad (\alpha ^{-1}+c_i(\theta ))a_{ir}(\theta ), \end{aligned}$$

for \(r,s=1,\ldots ,p\), and

$$\begin{aligned} \dfrac{\partial ^2\ell (\theta )}{\partial \alpha ^2}= & {} \dfrac{1}{2\alpha ^2}\sum _{i=1}^m{\lambda _i^*}-\dfrac{2m}{\alpha ^3}\dfrac{K'_\lambda (\alpha ^{-1})}{K_\lambda (\alpha ^{-1})}-\dfrac{m}{\alpha ^4}\dfrac{K''_\lambda (\alpha ^{-1})K_\lambda (\alpha ^{-1})-K'_\lambda (\alpha ^{-1})^2}{K_\lambda (\alpha ^{-1})^2}\\&+ \dfrac{2}{\alpha ^3}\sum _{i=1}^m\dfrac{K'_{\lambda _i^*}(\varDelta _i)}{K_{\lambda _i^*}(\varDelta _i)\varDelta _i}(\alpha ^{-1}+c_i(\theta ))+ \dfrac{1}{\alpha ^4}\sum _{i=1}^m\dfrac{K'_{\lambda _i^*}(\varDelta _i)}{K_{\lambda _i^*}(\varDelta _i)\varDelta _i}\\&-\dfrac{1}{\alpha ^3}\sum _{i=1}^m\dfrac{{\lambda _i^*}}{\alpha ^{-1}+2c_i(\theta )}+\dfrac{1}{2\alpha ^4}\sum _{i=1}^m\dfrac{{\lambda _i^*}}{(\alpha ^{-1}+2c_i(\theta ))^2}\\&+\dfrac{1}{\alpha ^4}\sum _{i=1}^m\dfrac{K''_{\lambda _i^*}(\varDelta _i)K_{\lambda _i^*}(\varDelta _i)\varDelta _i-K'_{\lambda _i^*}(\varDelta _i)[K'_{\lambda _i^*}(\varDelta _i)\varDelta _i+K_{\lambda _i^*}(\varDelta _i)]}{K_{\lambda _i^*}(\varDelta _i)^2\varDelta ^3_i}(\alpha ^{-1}+c_i(\theta ))^2. \end{aligned}$$

1.2 A.2 Louis information matrix

From Louis (1982), we have that the information matrix obtained from the EM-algorithm, say \(\mathbf{I}_n(\theta _*)\), is given by

$$\begin{aligned} I_n(\theta _*)=E\left( -\dfrac{\partial ^2\ell _c(\theta )}{\partial \theta _*\partial {\theta _*^\top }}\Big | Y^{obs}\right) -E\left( \dfrac{\partial \ell _c(\theta )}{\partial \theta _*}\dfrac{\partial \ell _c(\theta )}{\partial \theta _*}^\top \Big |Y^{obs}\right) , \end{aligned}$$
(10)

where we have defined \(Y^{obs}=\{(t_{ij},\delta _{ij}),\, j=1,\ldots ,n_i,\, i=1,\ldots ,m\}\).

Let \(\tau _i(\theta )=E(Z_i^2|Y^{obs})\) and \(\nu _i(\theta )=E(Z_i^{-2}|Y^{obs})\) for \(i=1,\ldots ,m\), where explicit expressions are directly available by using (3) and (9). The elements of the information matrix (10) are given by

$$\begin{aligned} E\left( -\dfrac{\partial ^2\ell _c(\theta )}{\partial \beta _r\partial \beta _s}\bigg |Y^{obs}\right)= & {} \sum _{i=1}^m\sum _{j=1}^{n_i}\omega _i(\theta )H_0(t_{ij})e^{x_{ij}^\top \beta }x_{ijr}x_{ijs}, \quad r,s=1,\ldots , p, \\ E\left( -\dfrac{\partial ^2\ell _c(\theta )}{\partial \alpha ^2}\bigg |Y^{obs}\right)= & {} \dfrac{m}{\alpha ^4}\dfrac{K_\lambda ''(\alpha ^{-1})K_\lambda (\alpha ^{-1})-K_\lambda '(\alpha ^{-1})^2}{K_\lambda (\alpha ^{-1})^2}\\&+\dfrac{2m}{\alpha ^3}\dfrac{K_\lambda '(\alpha ^{-1})}{K_\lambda (\alpha ^{-1})}+\dfrac{1}{\alpha ^3}\sum _{i=1}^m\left( \omega _i(\theta )+\kappa _i(\theta )\right) , \\ E\left( \dfrac{\partial \ell _c(\theta )}{\partial \beta _r}\dfrac{\partial \ell _c(\theta )}{\partial \beta _s}\bigg |Y^{obs}\right)= & {} \left( \sum _{i=1}^m\sum _{j=1}^{n_i}\delta _{ij}x_{ijr}\right) \left( \sum _{i=1}^m\sum _{j=1}^{n_i}\delta _{ij}x_{ijs}\right) \\&- \left( \sum _{i=1}^m\sum _{j=1}^{n_i}\delta _{ij}x_{ijs}\right) \left( \sum _{i=1}^m\omega _i(\theta )a_{ir}(\theta )\right) \\&-\left( \sum _{i=1}^m\sum _{j=1}^{n_i}\delta _{ij}x_{ijr}\right) \left( \sum _{i=1}^m\omega _i(\theta )a_{is}(\theta )\right) + \sum _{i=1}^m\tau _i(\theta )a_{ir}(\theta )a_{is}(\theta )\\&+ \sum _{i\ne i'}^m\omega _i(\theta )\omega _{i'}(\theta )a_{ir}(\theta )a_{i's}(\theta ),\quad r,s=1,\ldots , p, \\ E\left( \left( \dfrac{\partial \ell _c(\theta )}{\partial \alpha }\right) ^2\bigg |Y^{obs}\right)= & {} \dfrac{m^2}{\alpha ^4}\left( \dfrac{K'_\lambda (\alpha ^{-1})}{K_\lambda (\alpha ^{-1})}\right) ^2+ \dfrac{m}{\alpha ^4}\dfrac{K'_\lambda (\alpha ^{-1})}{K_\lambda (\alpha ^{-1})}\sum _{i=1}^m\left( \omega _i(\theta )+\kappa _i(\theta )\right) \\&+\dfrac{1}{4\alpha ^4}\sum _{i=1}^m\left( \tau _i(\theta )+2+\nu _i(\theta )\right) \\&+\dfrac{1}{4\alpha ^4}\sum _{i\ne i'}^m\left( \omega _i(\theta )+\kappa _i(\theta )\right) \left( \omega _{i'}(\theta )+\kappa _{i'}(\theta )\right) , \\ E\left( \dfrac{\partial \ell _c(\theta )}{\partial \beta _r}\dfrac{\partial \ell _c(\theta )}{\partial \alpha }\bigg |Y^{obs}\right)= & {} \dfrac{m}{\alpha ^2}\dfrac{K'_\lambda (\alpha ^{-1})}{K_\lambda (\alpha ^{-1})} \left( \sum _{i=1}^m\sum _{j=1}^{n_i}\delta _{ij}x_{ijr}-\sum _{i=1}^m\omega _i(\theta )a_{ir}(\theta )\right) \\&+\dfrac{1}{2\alpha ^2}\left( \sum _{i=1}^m\sum _{j=1}^{n_i}\delta _{ij}x_{ijr}\right) \\&\times \left( \sum _{i=1}^m\left( \omega _i(\theta )+\kappa _i(\theta )\right) \right) - \dfrac{1}{2\alpha ^2}\sum _{i=1}^m\left( \tau _i(\theta )+1\right) a_{ir}(\theta )\\&-\dfrac{1}{2\alpha ^2}\sum _{i\ne i'}^m\left( \omega _i(\theta )+\kappa _i(\theta )\right) \omega _{i'}(\theta )a_{i'r}(\theta ), \, r=1,\ldots ,p, \end{aligned}$$

and \(E\left( -\dfrac{\partial ^2\ell _c(\theta )}{\partial \beta _r\partial \alpha }\bigg |Y^{obs}\right) =0\), for \(r=1,\ldots ,p\), where we have defined \(a_{ir}(\theta )=\displaystyle \sum _{j=1}^{n_i}H_0(t_{ij})e^{x_{ij}^\top \beta }x_{ijr}\), \(b_{is}(\theta )=\displaystyle \sum _{j=1}^{n_i}H^{(s)}_0(t_{ij})e^{x_{ij}^\top \beta }\), for \(i=1,\ldots ,m\), \(r=1,\dots ,p\), and \(s=1,\ldots ,k+1\).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piancastelli, L.S.C., Barreto-Souza, W. & Mayrink, V.D. Generalized inverse-Gaussian frailty models with application to TARGET neuroblastoma data. Ann Inst Stat Math 73, 979–1010 (2021). https://doi.org/10.1007/s10463-020-00774-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-020-00774-z

Keywords

Navigation