Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol Extension
  • Published:

Radiosynthesis of [18F]SiFAlin-TATE for clinical neuroendocrine tumor positron emission tomography

Abstract

Here, we describe an extension of our silicon fluoride acceptor (SiFA) protocol for 18F-labeling of peptides that addresses challenges associated with preparing a clinical-grade (Tyr3)-octreotate (TATE) tracer for diagnosis of neuroendocrine tumors (NETs). After several iterations of protocol optimization (e.g., finding the optimal pH at which the isotopic exchange (IE) reaction produces high radiochemical yields (RCYs)), the SiFA technology achieved clinical applicability, as showcased by radiosynthesis of [18F]SiFAlin-TATE ([18F]SiTATE), the first SiFA peptide used in the clinical diagnosis of NETs. The TATE peptide binds to somatostatin receptors associated with NETs. Radiolabeled TATE derivatives are routinely applied in clinical oncological PET imaging. The (SiFA) 18F-labeling technology is based on the IE of a 19F atom for a radioactive 18F atom, a highly efficient labeling reaction under mild conditions. The 19F is part of a biomolecule bearing the SiFA building block, composed of a central silicon (Si) atom, a 19F atom connected to the Si atom, and two Si-bound tert-butyl groups. The IE proceeds through a penta-coordinate bipyramidal intermediate, followed by elimination of non-radioactive 19F, yielding the labeled compound in high RCYs at room temperature (22 °C). The simplicity and lack of side-product formation of this approach enable a one-step, kit-like preparation of structurally complex and unprotected radiopharmaceuticals. Compounds such as peptides used for tumor imaging in nuclear medicine can be 18F-labeled without the need for complex purification protocols. [18F]SiTATE can be synthesized within 30 min in preparative RCYs of 42%, radiochemical purity of >97% and high molar activity of 60 GBq/µmol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular structure of SiTATE.
Fig. 2: Flow chart for the synthesis of [18F]SiTATE.
Fig. 3: Typical HPLC chromatogram of semipreparative HPLC purification of SiTATE(7).
Fig. 4: Synthesis of [18F]SiTATE [18F]7.
Fig. 5: HPLC chromatograms of purified [18F]SiTATE [18F]7 and the unlabeled reference compound 7. [18F]SiTATE [18F]7, blue, retention time 2.4 min; unlabeled reference compound 7, orange.

Similar content being viewed by others

Data availability

Figures 3 and 5 show example HPLC chromatograms. These data are shown for the first time in these figures. Figure 4 includes information about the yields of the reactions, and the Anticipated results section contains their analytical data; these have been described in previous work, except for compound 7, which is included in this article.

References

  1. Olberg, D. E. & Hjelstuen, O. K. Labeling strategies of peptides with 18F for positron emission tomography. Curr. Top. Med. Chem. 10, 1669–1679 (2010).

    CAS  PubMed  Google Scholar 

  2. Okarvi, S. Recent progress in fluorine-18 labelled peptide radiopharmaceuticals. Eur. J. Nuc. Med. 28, 929–938 (2001).

    CAS  Google Scholar 

  3. Cai, L., Lu, S. & Pike, V. W. Chemistry with [18F]fluoride ion. Eur. J. Org. Chem. 2008, 2853–2873 (2008).

    Google Scholar 

  4. Shukla, A. K. & Kumar, U. Positron emission tomography: an overview. J. Med. Phys. 31, 13–21 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 37, 320–330 (2008).

    CAS  PubMed  Google Scholar 

  6. Banerjee, S. R. & Pomper, M. G. Clinical applications of gallium-68. Appl. Radiat. Isot. 76, 2–13 (2013).

    CAS  PubMed  Google Scholar 

  7. Smith, D. L., Breeman, W. A. P. & Sims-Mourtada, J. The untapped potential of gallium 68-PET: the next wave of 68Ga-agents. Appl. Radiat. Isot. 76, 14–23 (2013).

    CAS  PubMed  Google Scholar 

  8. Al-Nahhas, A. et al. Gallium-68 PET: a new frontier in receptor cancer imaging. Anticancer Res. 27, 4087–4094 (2007).

    CAS  PubMed  Google Scholar 

  9. Sanchez-Crespo, A. Comparison of gallium-68 and fluorine-18 imaging characteristics in positron emission tomography. Appl. Radiat. Isot. 76, 55–62 (2013).

    CAS  PubMed  Google Scholar 

  10. Decristoforo, C. Gallium-68—a new opportunity for PET available from a long shelflife generator—automation and applications. Curr. Radiopharm. 5, 212–220 (2012).

    CAS  PubMed  Google Scholar 

  11. Alves, F. et al. Production of copper-64 and gallium-68 with a medical cyclotron using liquid targets. Mod. Phys. Lett. A 32, 1740013 (2017).

    CAS  Google Scholar 

  12. Riga, S. et al. Production of Ga-68 with a General Electric PETtrace cyclotron by liquid target. Physica Med. 55, 116–126 (2018).

    Google Scholar 

  13. Pandey, M. K., Byrne, J. F., Jiang, H., Packard, A. B. & DeGrado, T. R. Cyclotron production of (68)Ga via the (68)Zn(p,n)(68)Ga reaction in aqueous solution. Am. J. Nucl. Med. Mol. Imaging 4, 303–310 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. Nelson, B. J. B. et al. Taking cyclotron 68Ga production to the next level: expeditious solid target production of 68Ga for preparation of radiotracers. Nucl. Med. Biol. 80-81, 24–31 (2020).

    CAS  PubMed  Google Scholar 

  15. Ilhan, H. et al. Biodistribution and first clinical results of 18F-SiFAlin-TATE PET—a novel 18F-labeled somatostatin analog for imaging of neuroendocrine tumors. Eur. J. Nucl. Med. Mol. Imaging 47, 870–880 (2019).

    PubMed  Google Scholar 

  16. Hope, T. A., Calais, J., Zhang, L., Dieckmann, W. & Millo, C. 111In-pentetreotide scintigraphy versus 68Ga-DOTATATE PET: impact on Krenning scores and effect of tumor burden. J. Nucl. Med. 60, 1266–1269 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hofman, M. S., Lau, W. F. E. & Hicks, R. J. Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. RadioGraphics 35, 500–516 (2015).

    PubMed  Google Scholar 

  18. Deppen, S. A. et al. Safety and efficacy of 68Ga-DOTATATE PET/CT for diagnosis, staging, and treatment management of neuroendocrine tumors. J. Nucl. Med. 57, 708–714 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Waldmann, C. M., Stuparu, A. D., van Dam, R. M. & Slavik, R. The search for an alternative to [(68)Ga]Ga-DOTA-TATE in neuroendocrine tumor theranostics: current state of (18)F-labeled somatostatin analog development. Theranostics 9, 1336–1347 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bozkurt, M. F. et al. Guideline for PET/CT imaging of neuroendocrine neoplasms with 68Ga-DOTA-conjugated somatostatin receptor targeting peptides and 18F–DOPA. Eur. J. Nucl. Med. Mol. Imaging 44, 1588–1601 (2017).

    CAS  PubMed  Google Scholar 

  21. Dasari, A. et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol 3, 1335–1342 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. Ilhan, H. et al. First-in-human 18F-SiFAlin-TATE PET/CT for NET imaging and theranostics. Eur. J. Nucl. Med. Mol. Imaging 46, 2400–2401 (2019).

    PubMed  Google Scholar 

  23. Schirrmacher, R. et al. Small prosthetic groups in 18F-radiochemistry: useful auxiliaries for the design of 18F-PET tracers. Semin. Nucl. Med. 47, 474–492 (2017).

    PubMed  Google Scholar 

  24. Schirrmacher, R. et al. 18F-Labeling of peptides by means of an organosilicon-based fluoride acceptor. Angew. Chem., Int. Ed. 45, 6047–6050 (2006).

    CAS  Google Scholar 

  25. Wängler, C. et al. Silicon-[18F]fluorine radiochemistry: basics, applications and challenges. Appl. Sci. 2, 277–302 (2012).

    Google Scholar 

  26. Bernard-Gauthier, V. et al. From unorthodox to established: the current status of 18F-trifluoroborate- and 18F-SiFA-based radiopharmaceuticals in PET nuclear imaging. Bioconjugate Chem 27, 267–279 (2016).

    CAS  Google Scholar 

  27. Perrin, D. M. [18F]-Organotrifluoroborates as radioprosthetic groups for PET Imaging: from design principles to preclinical applications. Acc. Chem. Res. 49, 1333–1343 (2016).

    CAS  PubMed  Google Scholar 

  28. Pourghiasian, M. et al. 18F-AmBF3-MJ9: a novel radiofluorinated bombesin derivative for prostate cancer imaging. Bioorg. Med. Chem. 23, 1500–1506 (2015).

    CAS  PubMed  Google Scholar 

  29. Bernard-Gauthier, V. et al. Recent advances in 18F radiochemistry: a focus on B-18F, Si-18F, Al-18F, and C-18F radiofluorination via spirocyclic iodonium ylides. J. Nucl. Med. 59, 568–572 (2018).

    CAS  PubMed  Google Scholar 

  30. Laverman, P., McBride, W. J., Sharkey, R. M., Goldenberg, D. M. & Boerman, O. C. Al18F labeling of peptides and proteins. J. Labelled Compd. Radiopharm. 57, 219–223 (2014).

    CAS  Google Scholar 

  31. Laverman, P. et al. A novel facile method of labeling octreotide with 18F. J. Nucl. Med. 51, 454–461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pauwels, E. et al. Al18F-NOTA-octreotide: first comparison with 68Ga-DOTATATE in a neuroendocrine tumour patient. Eur. J. Nucl. Med. Mol. Imaging 46, 2398–2399 (2019).

    PubMed  Google Scholar 

  33. Hong, H. et al. Rapid one-step 18F-radiolabeling of biomolecules in aqueous media by organophosphine fluoride acceptors. Nat. Commun. 10, 989 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. Wessmann, S. H., Henriksen, G. & Wester, H.-J. Cryptate mediated nudeophilic 18F-fluorination without azeotropic drying. Nuklearmedizin 51, 1–8 (2012).

    CAS  PubMed  Google Scholar 

  35. Wängler, C. et al. One-step 18F-labeling of carbohydrate-conjugated octreotate-derivatives containing a silicon-fluoride-acceptor (SiFA): in vitro and in vivo evaluation as tumor imaging agents for positron emission tomography (PET). Bioconjugate Chem 21, 2289–2296 (2010).

    Google Scholar 

  36. Dialer, L. O. et al. Studies toward the development of new silicon-containing building blocks for the direct 18F-labeling of peptides. J. Med. Chem. 56, 7552–7563 (2013).

    CAS  PubMed  Google Scholar 

  37. Höhne, A. et al. Synthesis, 18F-labeling, and in vitro and in vivo studies of bombesin peptides modified with silicon-based building blocks. Bioconjugate Chem 19, 1871–1879 (2008).

    Google Scholar 

  38. Lindner, S. et al. Synthesis and in vitro and in vivo evaluation of SiFA-tagged bombesin and RGD peptides as tumor imaging probes for positron emission tomography. Bioconjugate Chem. 25, 738–749 (2014).

    CAS  Google Scholar 

  39. Niedermoser, S. et al. In vivo evaluation of 18F-SiFAlin–modified TATE: a potential challenge for 68Ga-DOTATATE, the clinical gold standard for somatostatin receptor imaging with PET. J. Nucl. Med. 56, 1100–1105 (2015).

    CAS  PubMed  Google Scholar 

  40. Wängler, C. et al. One-step 18F-labeling of peptides for positron emission tomography imaging using the SiFA methodology. Nat. Protoc. 7, 1946–1955 (2012).

    PubMed  Google Scholar 

  41. Wellings, D. A. & Atherton, E. Standard Fmoc protocols. Methods Enzymol. 289, 44–67 (1997).

    CAS  PubMed  Google Scholar 

  42. Iovkova, L. et al. para‐Functionalized Aryl‐di‐tert‐butylfluorosilanes as potential labeling synthons for 18F radiopharmaceuticals. Chemistry 15, 2140–2147 (2009).

    CAS  PubMed  Google Scholar 

  43. Kostikov, A. P. et al. N-(4-(di-tert-butyl[18F]fluorosilyl)benzyl)-2-hydroxy-N,N-dimethylethylammonium bromide ([18F]SiFAN+Br−): a novel lead compound for the development of hydrophilic SiFA-based prosthetic groups for 18F-labeling. J. Fluorine Chem. 132, 27–34 (2011).

    CAS  Google Scholar 

  44. Burke, B. P., Clemente, G. S. & Archibald, S. J. Boron–18F containing positron emission tomography radiotracers: advances and opportunities. Contrast Media Mol. Imaging 10, 96–110 (2015).

    CAS  PubMed  Google Scholar 

  45. Chansaenpak, K., Vabre, B. & Gabbaï, F. P. [18F]-Group 13 fluoride derivatives as radiotracers for positron emission tomography. Chem. Soc. Rev. 45, 954–971 (2016).

    CAS  PubMed  Google Scholar 

  46. Kumar, K. & Ghosh, A. 18F-AlF labeled peptide and protein conjugates as positron emission tomography imaging pharmaceuticals. Bioconjugate Chem 29, 953–975 (2018).

    CAS  Google Scholar 

  47. Bernard-Gauthier, V. et al. 18F-labeled silicon-based fluoride acceptors: potential opportunities for novel positron emitting radiopharmaceuticals. Biomed Res. Int. 2014, 454503 (2014).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC, Discovery Grant) to R.S.

Author information

Authors and Affiliations

Authors

Contributions

S.L. and C.W. performed the chemistry/radiochemistry, developed the protocol and helped writing the materials, procedure and troubelshooting paragraphs. C.W., J.J.B., K.J., P.B. and B.W. co-developed the protocol and wrote parts of the protocol. R.S. and B. W. developed the protocol and wrote the abstract and introduction of the protocol.

Corresponding authors

Correspondence to Björn Wängler or Ralf Schirrmacher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Bernd Neumaier and Chris Phenix for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Niedermoser, S. et al. J. Nucl. Med. 56, 1100–1105 (2015): http://jnm.snmjournals.org/content/56/7/1100.long

Ilhan, H. et al. Eur. J. Nucl. Med. Mol. Imaging 47, 870–880 (2020): https://link.springer.com/article/10.1007/s00259-019-04501-6

Ilhan, H. et al. Eur. J. Nucl. Med. Mol. Imaging 46, 2400–2401 (2019): https://link.springer.com/article/10.1007%2Fs00259-019-04448-8

Related protocol

Wängler, B. et al. Nat. Prot. 7, 1964–1969 (2012): https://doi.org/10.1038/nprot.2012.111

This protocol is an extension to: Nat. Protoc. 7, 1946–1955 (2012): https://doi.org/10.1038/nprot.2012.109

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindner, S., Wängler, C., Bailey, J.J. et al. Radiosynthesis of [18F]SiFAlin-TATE for clinical neuroendocrine tumor positron emission tomography. Nat Protoc 15, 3827–3843 (2020). https://doi.org/10.1038/s41596-020-00407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-00407-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer