Skip to main content
Log in

Surface Waves in a Collisional Quark-Gluon Plasma

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Surface waves propagating in the semi-bounded collisional hot QCD medium (quark-gluon plasma) are considered. To investigate the effect of collisions as damping and non-ideality factor, the longitudinal and transverse dielectric functions of the quark-gluon plasma are used within the Bhatnagar–Gross–Krook (BGK) approach. The results were obtained both analytically and numerically in the long wavelength limit. First of all, collisions lead to smaller values of surface wave frequency and their stronger damping. Secondly, the results show that non-ideality leads to the appearance of a new branch of surface waves compared to the collisionless case. The relevance of the surface excitations (waves) for the QGP realized in experiments is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. Bazavov et al., “Chiral crossover in QCD at zero and non-zero chemical potentials,” Phys. Lett. B 795, 15 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Bonitz, R. Binder, D. Scott, S. Koch, and D. Kremp, “Theory of plasmons in quasi-one-dimensional degenerate plasmas,” Phys. Rev. E 49, 5535 (1994).

    Article  ADS  Google Scholar 

  3. D. Scott, R. Binder, M. Bonitz, and S. Koch, “Multiple undamped acoustic plasmons in three-dimensional two-component nonequilibrium plasmas,” Phys. Rev. B 49, 2174 (1994).

    Article  ADS  Google Scholar 

  4. P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,” Phys. Rev. 94, 511 (1954).

    Article  ADS  Google Scholar 

  5. P. Chakraborty, M. Golam Mustafa, R. Ray, and M. H. Thoma, “Wakes in a collisional quark-gluon plasma,” J. Phys. G 34, 2141 (2007).

    Article  ADS  Google Scholar 

  6. M. E. Carrington, T. Fugleberg, D. Pickering, and M. H. Thoma, “Dielectric functions and dispersion relations of ultrarelativistic plasmas with collisions,” Can. J. Phys. 82, 671 (2004).

    Article  ADS  Google Scholar 

  7. P. Chakraborty, M. G. Mustafa, and M. H. Thoma, “Wakes in the quark-gluon plasma,” Phys. Rev. D 74, 094002 (2006).

    Article  ADS  Google Scholar 

  8. M. Carrington, K. Deja, and S. Mrowczynski, “Plasmons in anisotropic quark-gluon plasma,” Phys. Rev. C 90, 034913 (2014).

    Article  ADS  Google Scholar 

  9. Bing-feng Jiang and Jia-rong Li, “The dielectric function of the viscous quark-gluon plasma,” Nucl. Phys. A 847, 268 (2010).

    Article  ADS  Google Scholar 

  10. Bing-feng Jiang and Jia-Rong Li, “The wake potential in the viscous quark-gluon plasma,” Nucl. Phys. A 856, 121 (2011).

    Article  ADS  Google Scholar 

  11. M. Gyulassy and M. Plümer, “Jet quenching in dense matter,” Phys. Lett. B 243, 432 (1990).

    Article  ADS  Google Scholar 

  12. A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer, Berlin, Heidelberg, 1984), Vol. 9.

    Book  Google Scholar 

  13. Dong-Soo Shin and Young-Dae Jung, “Pair annihilation effects on dust ion acoustic surface wave in semi-bounded magnetized pair-ion-dust plasmas,” Phys. Lett. A 349, 500 (2006).

    Article  ADS  Google Scholar 

  14. In-Seok Chang and Young-Dae Jung, “Quantum effects on propagation of surface Langmuir oscillations in semi-bounded quantum plasmas,” Phys. Lett. A 372, 1498 (2008).

    Article  ADS  Google Scholar 

  15. Young-Dae Jung and Woo-Pyo Hong, “Quantum and geometric effects on the symmetric and anti-symmetric modes of the surface plasma wave,” Phys. Lett. A 377, 560 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  16. F. Becattini, J. Manninen, and M. Gaździcki, “Energy and system size dependence of chemical freeze-out in relativistic nuclear collisions,” Phys. Rev. C 73, 044905 (2006).

    Article  ADS  Google Scholar 

  17. J. Peralta-Ramos and E. Calzetta, “Effective dynamics of a nonabelian plasma out of equilibrium,” Phys. Rev. D 86, 125024 (2012).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work has been supported by the MES RK under Grant no. AP08052503 (2020) and by RFBR under grant no. 18-02-40137.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Baiseitov.

APPENDIX A

APPENDIX A

Taking into account that \(a \ll 1\), we used the following expansion:

$$ln\frac{{1 + a}}{{1 - a}} \approx 2a + \frac{{2{{a}^{3}}}}{3} + \frac{{2{{a}^{5}}}}{5} + \ldots $$
(A.1)

Substituting the expansion (A.1) into Eqs. (5) and (6) we get

$$\begin{gathered} {{\epsilon }_{l}}(\tilde {\omega },\tilde {k}) \approx 1 + \frac{1}{{{{{\tilde {k}}}^{2}}}}\left( { - \frac{{{{a}^{2}}}}{3} - \frac{{{{a}^{4}}}}{5}} \right) \\ \times \,\,{{\left( {1 - \frac{{\widetilde {i\tilde {\nu }}}}{{\tilde {k}}}a - \frac{{i\tilde {\nu }}}{{3\tilde {k}}}{{a}^{3}} - \frac{{i\tilde {\nu }}}{{5\tilde {k}}}{{a}^{5}}} \right)}^{{ - 1}}}, \\ \end{gathered} $$
(A.2)

and

$${{\epsilon }_{t}}(\tilde {\omega },\tilde {k}) \approx 1 - \frac{a}{{2\tilde {\omega }\tilde {k}}}\left\{ {1 + \left( {\frac{1}{{{{a}^{2}}}} - 1} \right)\left( { - \frac{{{{a}^{2}}}}{3} - \frac{{{{a}^{4}}}}{5}} \right)} \right\},$$
(A.3)

respectively. Neglecting terms of \(\mathcal{O}({{a}^{3}})\) in Eqs. (A.2) and (A.3), and making use of the expansion \({{\left( {1 - \tfrac{{i\tilde {\nu }}}{{\tilde {k}}}a} \right)}^{{ - 1}}} \approx 1 + \tfrac{{i\tilde {\nu }}}{{\tilde {k}}}a\) in Eq. (A.2), we arrive at

$$\begin{gathered} {{\epsilon }_{l}}(\tilde {\omega },\tilde {k}) \approx 1 + \frac{1}{{{{{\tilde {k}}}^{2}}}}\left( { - \frac{{{{a}^{2}}}}{3}} \right){{\left( {1 - \frac{{i\tilde {\nu }}}{{\tilde {k}}}a} \right)}^{{ - 1}}} \\ \approx 1 + \frac{1}{{{{{\tilde {k}}}^{2}}}}\left( { - \frac{{{{a}^{2}}}}{3}} \right)\left( {1 + \frac{{i\tilde {\nu }}}{{\tilde {k}}}a} \right), \\ \end{gathered} $$
(A.4)

and

$$\begin{gathered} {{\epsilon }_{t}}(\tilde {\omega },\tilde {k}) \approx 1 - \frac{a}{{2\tilde {\omega }\tilde {k}}}\left\{ {1 + \left( {\frac{1}{{{{a}^{2}}}} - 1} \right)\left( { - \frac{{{{a}^{2}}}}{3} - \frac{{{{a}^{4}}}}{5}} \right)} \right\} \\ = 1 - \frac{a}{{2\tilde {\omega }\tilde {k}}}\left\{ {\frac{2}{3} + \frac{{2{{a}^{2}}}}{{15}}} \right\}, \\ \end{gathered} $$
(A.5)

Finally, dropping terms of \(\mathcal{O}({{a}^{3}})\) in Eqs. (A.4) and (A.5), we get expressions (7) and (8).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baiseitov, K., Moldabekov, Z.A., Blaschke, D. et al. Surface Waves in a Collisional Quark-Gluon Plasma. Phys. Part. Nuclei Lett. 17, 803–808 (2020). https://doi.org/10.1134/S1547477120060035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477120060035

Navigation