Skip to main content
Log in

Phenomenological Study for the Search of Evidence for Intrinsic Charm at the COMPASS Experiment

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. EXPERIMENT
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

In this paper we conduct a phenomenological study for the search of evidence for the intrinsic charm mechanism in double \({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi }\) production at the COMPASS experiment using the CERN \({{\pi }^{ - }}\) beam at 190 GeV/c. Estimations on \({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi }\) pair cross-sections and kinematic distributions are given for different production mechanisms. We also re-review the double \({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi }\) production data provided by the NA3 experiment using the CERN \({{\pi }^{ - }}\) beam at 150 and 280 GeV/c with incident on a platinum target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. In this paper \({{x}_{{\text{F}}}}\) denotes the Feynman-\(x\) in the laboratory frame while \(x_{{\text{F}}}^{ * }\) denotes the Feynman-\(x\) in the center-of-mass system.

  2. For an estimate like this, generalizations of the method given in [1720] are not needed.

REFERENCES

  1. S. J. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, “The intrinsic charm of the proton,” Phys. Lett. B 93, 451 (1980).

    Article  ADS  Google Scholar 

  2. S. J. Brodsky, J. C. Collins, S. D. Ellis, J. F. Gunion, and A. H. Mueller, “Intrinsic chevrolets at the SSC,” in Proceedings of the Snowmass Summer Study, June 23–July 13,1984, p. 0227.

  3. M. Franz, M. V. Polyakov, and K. Goeke, “Heavy quark mass expansion and intrinsic charm in light hadrons,” Phys. Rev. D: Part. Fields 62, 074024 (2000).

    Article  ADS  Google Scholar 

  4. W. S. Lockman, T. Meyer, J. Rander, P. Schlein, R. Webb, S. Erhan, and J. Zsembery, “Evidence for \(\Lambda _{c}^{ + }\) in inclusive \(pp \to ({{\Lambda }^{0}}{{\pi }^{ + }}{{\pi }^{ + }}{{\pi }^{ - }}\)) + X and \(pp \to ({{K}^{ - }}{{\pi }^{ + }}p)\)+ X at √s = 53 GeV and 62 GeV,” Phys. Lett. B 85, 443 (1979).

    Article  ADS  Google Scholar 

  5. P. Chauvat et al. (R608 Collab.), “Production of Λ(c) with large X(f) at the ISR,” Phys. Lett. B 199, 304 (1987).

    Article  ADS  Google Scholar 

  6. G. Bari et al. (R422 Collab.), “The Lambda/b0 beauty baryon production in proton proton interactions at √s = 62 GeV: A second observation,” Nuovo Cim. A 104, 1787 (1991).

    Article  ADS  Google Scholar 

  7. S. J. Brodsky, V. A. Bednyakov, G. I. Lykasov, J. Smiesko, and S. Tokar, Prog. Part. Nucl. Phys. 93, 108 (2017).

    Article  ADS  Google Scholar 

  8. M. Aaboud et al. (ATLAS Collab.), Phys. Lett. B 776, 295 (2018).

    Article  ADS  Google Scholar 

  9. V. A. Bednyakov, S. J. Brodsky, A. V. Lipatov, G. I. Lykasov, M. A. Malyshev, J. Smiesko, and S. Tokar, Eur. Phys. J. C 79, 92 (2019).

    Article  ADS  Google Scholar 

  10. M. Mattson et al. (SELEX Collab.), “First observation of the doubly charmed baryon \(\Xi _{{cc}}^{ + }\),” Phys. Rev. Lett. 89, 112001 (2002).

    Article  ADS  Google Scholar 

  11. A. Ocherashvili et al. (SELEX Collab.), “Confirmation of the double charm baryon \(\Xi {{ + }_{{cc}}}(3520)\) via its decay to pD+K,” Phys. Lett. B 628, 18 (2005).

    Article  ADS  Google Scholar 

  12. J. Badier et al. (NA3 Collab.), “Experimental \({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi }\) hadronic production from 150 GeV/c to 280 GeV/c,” Z. Phys. C 20, 101 (1983).

    ADS  Google Scholar 

  13. J. Badier et al. (NA3 Collab.), “Evidence for \(\psi \psi \) production in \({{\pi }^{ - }}\) interactions at 150 GeV/c and 280 GeV/c,” Phys. Lett. B 114, 457 (1982).

    Article  ADS  Google Scholar 

  14. J. Badier et al. (Saclay-CERN-College de France-Ecole Poly-Orsay Collab.), “A large acceptance spectrometer to study high mass muon pairs,” Nucl. Instrum. Methods Phys. Res. 175, 319 (1980).

    Article  ADS  Google Scholar 

  15. R. E. Ecclestone and D. M. Scott, “Production of \(\psi \psi \) in pion-nucleon interactions by quark-anti-quark annihilation,” Phys. Lett. B 120, 237 (1983).

    Article  ADS  Google Scholar 

  16. J. F. Amundson, O. J. P. Eboli, E. M. Gregores, and F. Halzen, “Colorless states in perturbative QCD: Charmonium and rapidity gaps,” Phys. Lett. B 372, 127 (1996).

    Article  ADS  Google Scholar 

  17. R. Gavai, D. Kharzeev, H. Satz, G. A. Schuler, K. Sridhar, and R. Vogt, “Quarkonium production in hadronic collisions,” Int. J. Mod. Phys. A 10, 3043 (1995).

    Article  ADS  Google Scholar 

  18. R. E. Nelson, R. Vogt, and A. D. Frawley, “Narrowing the uncertainty on the total charm cross section and its effect on the \({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi }\) cross section,” Phys. Rev. C 87, 014908 (2013).

    Article  ADS  Google Scholar 

  19. R. Vogt, “Shadowing effects on J/ψ and \(\Upsilon \) production at energies available at the CERN Large Hadron Collider,” Phys. Rev. C 92, 034909 (2015).

    Article  ADS  Google Scholar 

  20. Y. Q. Ma and R. Vogt, “Quarkonium production in an improved color evaporation model,” Phys. Rev. D: Part. Fields 94, 114029 (2016).

    Article  ADS  Google Scholar 

  21. S. Koshkarev, “Phenomenological analysis of the possible impact of double parton scattering in double \(J{\text{/}}\psi \) production at the COMPASS detector using the CERN π beam at 190 GeV/c,” arXiv: 1909.06195 [hep-ph].

  22. T. Sjöstrand, S. Mrenna, and P. Z. Skands, “A brief introduction to PYTHIA 8.1,” Comput. Phys. Commun. 178, 852 (2008).

    Article  ADS  Google Scholar 

  23. H. S. Shao, “HELAC-Onia: An automatic matrix element generator for heavy quarkonium physics,” Comput. Phys. Commun. 184, 2562 (2013).

    Article  ADS  Google Scholar 

  24. H. S. Shao, “HELAC-Onia 2.0: An upgraded matrix-element and event generator for heavy quarkonium physics,” Comput. Phys. Commun. 198, 238 (2016).

    Article  ADS  Google Scholar 

  25. R. Vogt and S. J. Brodsky, “Intrinsic charm contribution to double quarkonium hadroproduction,” Phys. Lett. B 349, 569 (1995).

    Article  ADS  Google Scholar 

  26. R. Vogt, “QCD mechanisms for double quarkonium and open heavy meson hadroproduction,” Nucl. Phys. B 446, 159 (1995).

    Article  ADS  Google Scholar 

  27. S. Koshkarev, “Groote, double quarkonium production at high Feynman-\(x\),” Nucl. Phys. B 915, 384 (2017).

    Article  ADS  Google Scholar 

  28. S. Koshkarev and S. Groote, “Signals of the double intrinsic heavy quark at the current experiments,” J. Phys.: Conf. Ser. 938, 012054 (2017).

    Google Scholar 

  29. P. Abbon et al. (COMPASS Collab.), “The COMPASS setup for physics with hadron beams,” Nucl. Instrum. Methods Phys. Res., Sect. A 779, 69 (2015).

    Google Scholar 

  30. M. Aghasyan et al. (COMPASS Collab.), “First measurement of transverse-spin-dependent azimuthal asymmetries in the Drell-Yan process,” Phys. Rev. Lett. 119, 112002 (2017).

    Article  ADS  Google Scholar 

  31. B. Humpert and P. Mery, “\(\psi \psi \) production by quarks, gluons and B mesons,” Phys. Lett. B 124, 265 (1983).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank H.S. Shao for updating the HELAC-Onia generator. Also we would like to thank D. Bandurin for useful discussions.

Funding

This research was supported by the European Regional Development Fund under Grant no. TK133, and by the Estonian Research Council under Grant no. PRG356.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gridin.

APPENDIX A

APPENDIX A

We already investigated possible contribution from SPS and IC mechanisms, and we even mentioned the contribution from DPS. However, it is possible to produce a pair of \({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi }\) mesons also by SPS–IC interference. In this case one of the \({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi }\) comes from IC and the other from a standard pQCD SPS process like gluon–gluon fusion or quark–antiquark annihilation.

As the \({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi }\) from IC is produced at the “surface” of the hadron or nucleus, we assume that IC mechanism always contributes first. Starting from the \({{x}_{F}}\) distributions in Fig. 7 for single \(J/\psi \) from IC (red histogram to the right) or SPS (blue histogram to the left), the double \(J/\psi \) distribution for SPS–IC interference is calculated under this assumption to be as shown in Fig. 8. It is easy to see that the present region of double \(J/\psi \) in the NA3 data does not support this production mechanism very much.

Fig. 7.
figure 7

Prediction for the \({{x}_{{\text{F}}}}\) distributions of a single \({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi }\) for SPS (blue histogram to the left) and IC (red histogram to the right).

Fig. 8.
figure 8

Prediction for the \({{x}_{{\text{F}}}}\) distributions of a \({J \mathord{\left/ {\vphantom {J \psi }} \right. \kern-0em} \psi }\) pair for SPS–IC interference.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gridin, A., Groote, S., Guskov, A. et al. Phenomenological Study for the Search of Evidence for Intrinsic Charm at the COMPASS Experiment. Phys. Part. Nuclei Lett. 17, 826–833 (2020). https://doi.org/10.1134/S1547477120060059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477120060059

Navigation