Skip to main content
Log in

Production of Dimethyl Ether from Nitrogen-Containing Syngas

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A series of experiments in conversion of nitrogen-rich (above 40 vol %) syngas to produce dimethyl ether (DME) was carried out in a flow-through pilot installation. Two commercial catalysts, specifically a DV-8-2 methanol catalyst and a γ-Al2O3 dehydration catalyst, were used as components of a bifunctional catalyst. The paper introduces the concept of reacting gas, the content of which in syngas corresponds to the sum of the content of hydrogen and carbon oxides. No methanol or DME was detected in the converted gas leaving the reactor, as these compounds condense in a water-cooled separator. The following performance values were achieved after more than 600 total running hours of the bifunctional catalyst: DME selectivity at least 66% and DME productivity up to 340 L kgcat–1 h–1. The study of single-stage DME synthesis from nitrogen-containing syngas has demonstrated the practicability for an industrial process technology using commercial components in a bifunctional catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Yan, Q., Yu, F., Liu, J., Street, J., Gao, J., Cai, Z., and Zhang, J., Bioresour. Technol., 2013, vol. 127, pp. 281–290. https://doi.org/10.1016/j.biortech.2012.09.069

    Article  CAS  PubMed  Google Scholar 

  2. Pohořely, M., Jeremiaš, M., Svoboda, K., Kamenikova, P., Skoblia, S., and Beňo, Z., Fuel, 2014, vol. 117, pp. 198–205. https://doi.org/10.1016/j.fuel.2013.09.068

    Article  CAS  Google Scholar 

  3. Wang, Z., He, T., Qin, J., Wu, J., Li, J., Zi, Z., Liu, G., Wu, J., and Sun, L., Fuel, 2015, vol. 150, pp. 386–393. https://doi.org/10.1016/j.fuel.2015.02.056

    Article  CAS  Google Scholar 

  4. Li, Y., Wang, T., Yin, X., Wu, C., Ma, L., Li, H., Lv, Y., and Sun, L., Renew. Energ., 2010, vol. 35, pp. 583–587. https://doi.org/10.1016/j.renene.2009.08.002

    Article  CAS  Google Scholar 

  5. Arutyunov, V.S., Shmelev, V.M., Lobanov, I.N., and Politenkova, G.G., Theor. Found. Chem. Eng., 2010, vol. 44, p. 20. https://doi.org/10.1134/S0040579510010033

    Article  CAS  Google Scholar 

  6. Arutyjunov, V.S., Strekova, L.N., Savchenko, V.I., Sedov, I.V., Nikitin, A.V., Eliseev, O.L., Kryuchkov, M.V., and Lapidus, Petrol. Chem., 2019, vol. 59, p. 370. https://doi.org/10.1134/S0965544119040029

    Article  Google Scholar 

  7. Baliban, R.C., Elia, J.A., and Floudas C.A, Ind. Eng. Chem. Res., 2013, vol. 52, pp. 3381–3406. https://doi.org/10.1021/ie3024643

    Article  CAS  Google Scholar 

  8. Markova, N.A., Bukina, Z.M., Ionin, D.A., Kolesnichenko, N.V., and Khadzhiev, S.N., Petrol. Chem., 2016, vol. 56, p. 857. https://doi.org/10.1134/S0965544116090164

    Article  CAS  Google Scholar 

  9. Ionin, D.A., Kolesnichenko, N.V., Bukina, Z.M., and Khadzhiev, S.N., Petrol. Chem., 2015, vol. 55, p. 112. https://doi.org/10.1134/S0965544115020115

    Article  CAS  Google Scholar 

  10. Ilias, S. and Bhan, A., ACS Catal., 2013, vol. 3, pp. 18–31.

  11. Volnina, E.A., Kipnis, M.A., and Khadzhiev, S.N., Petrol. Chem., 2017, vol. 57, p. 353. https://doi.org/10.1134/S0965544117050139

    Article  CAS  Google Scholar 

  12. Bukhtiyarova, M., Lunkenbein, T., Kahler, K., and Schlogl, R., Catal. Lett., 2017, vol. 147, pp. 416–427. https://doi.org/10.1007/s10562-016-1960-x

    Article  CAS  Google Scholar 

  13. Karavaev, M.M., Leonov, V.E., Popov, I.G., and Shepelev, E.T., Tekhnologiya sinteticheskogo metanola (Synthetic Methanol Technology), Karavaev, M.M., Ed., Moscow: Khimiya, 1984.

  14. Kipnis, M.A., Samokhin, P.V., Belostotskii, I.A., and Turkova, T.V., Catal. Ind., 2018, vol. 10, p. 97. https://doi.org/10.1134/S2070050418020095

    Article  Google Scholar 

  15. Kipnis, M.A., Belostotskii, I.A., Volnina, E.A., Lin, G.I., and Marshev, I.I., Kinet. Catal., 2018, vol. 59, p. 754. https://doi.org/10.1134/S0023158418060071

    Article  CAS  Google Scholar 

  16. Saravanan, K., Ham, H., Tsubaki, N., and Bae, J.W., Appl. Catal. B, 2017, vol. 217, pp. 494–522. https://doi.org/10.1016/j.apcatb.2017.05.085

    Article  CAS  Google Scholar 

  17. Sun, J., Yang, G., Yoneyama, Y., and Tsubaki, N., ACS Catal., 2014, vol. 4, pp. 3346–3356. https://doi.org/10.1021/cs500967j

    Article  CAS  Google Scholar 

  18. Kipnis, M.A., Belostotskii, I.A., Volnina, E.A., and Lin, G.I., Catal. Ind., 2019, vol. 11, p. 53. https://doi.org/10.1134/S2070050419010070

    Article  Google Scholar 

Download references

Funding

The reported study was performed within the framework of the state assignment for TIPS RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kipnis.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, G.I., Kipnis, M.A. Production of Dimethyl Ether from Nitrogen-Containing Syngas. Pet. Chem. 61, 101–106 (2021). https://doi.org/10.1134/S0965544121010126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121010126

Keywords:

Navigation