Skip to main content
Log in

Do current radical innovation measures actually measure radical drug innovation?

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

To date, there has been little agreement in the literature on what exactly constitutes radical drug innovation and how to properly measure this important construct. Without a validated measure, our ability to understand radical drug innovations, explain their origins, and demonstrate their implications for management and health policy is limited. This paper addresses the problem of radical drug innovation measurement, provides evidence of the limitations associated with the current state of the art, and offers a new method based on German health technology assessments (HTA). Data was obtained for 147 drugs authorized by the European Medicines Agency from 2011 to 2016. The innovativeness of these drugs was assessed using current measures of radical drug innovation compared with the newly developed measure. Findings indicate that current measures of radical drug innovation are associated with very inconsistent outcomes and do not appear to measure what they purport to measure. This study argues that assessing therapeutic value (as measured by the German HTA) is particularly important, given that drug novelty alone does not conclusively indicate whether a drug will deliver therapeutic value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Throughout this paper, the term radical innovation is used to describe rare and high-impact innovations, which provide competitive advantages to firms (Tushman and Anderson 1986). Other terms that are synonymous with radical innovation are breakthrough, major, and revolutionary innovations (Danneels and Kleinschmidt 2001).

  2. A Google Scholar search on 10 February 2019 resulted in 175 papers with radical innovation in the title that had been published since the beginning of 2017.

  3. Absorptive capacity has been the subject of significant research efforts (Noblet et al. 2011). There is a common understanding in the literature that higher firm-level absorptive capacity leads to better innovation outcomes (Cohen and Levinthal 1990; Lazzeri and Pisano 2014).

  4. A backward citation refers to a patent that was already available when the patent of interest was granted. A forward citation refers to newer patents that cite the patent of interest that was granted before the newer patents.

  5. The TTO method is based on replies from a sample of people who were asked how many life years they would trade in order to avoid living with a certain health state (e.g., a specific disease or disability).

  6. Benefit assessment of pharmaceuticals in accordance with the German Social Code, Book Five (SGB V), Sect. 35a.

  7. Guidelines, typically developed by a specialist society, that are generally accepted in the medical community for the treatment of a disease or condition.

  8. HTA was based on the assessment of the additional therapeutic value of drugs net of treatment risks (safety) when compared to the standard of care (i.e., the best treatment option that was available at the time of the comparison). There were no evaluations of ethical, legal, or social aspects of any drug.

References

  • Achilladelis, B., & Antonakis, N. (2001). The dynamics of technological innovation: The case of the pharmaceutical industry. Research Policy, 30(4), 535–588.

    Google Scholar 

  • Ahuja, G., & Lampert, C. M. (2001). Entrepreneurship in the large corporation: A longitudinal study of how established firms create breakthrough inventions. Strategic Management Journal, 22(6–7), 521–543. https://doi.org/10.1002/smj.176

    Article  Google Scholar 

  • Alqahtani, S., Seoane-Vazquez, E., Rodriguez-Monguio, R., & Eguale, T. (2015). Priority review drugs approved by the FDA and the EMA: Time for international regulatory harmonization of pharmaceuticals? Pharmacoepidemiology and Drug Safety, 24(7), 709–715. https://doi.org/10.1002/pds.3793

    Article  Google Scholar 

  • Arnold, D. G., & Troyer, J. L. (2016). Does increased spending on pharmaceutical marketing inhibit pioneering innovation? Journal of Health Politics, Policy and Law, 41(2), 157.

    Google Scholar 

  • Aronson, J. K., Ferner, R. E., & Hughes, D. A. (2012). Defining rewardable innovation in drug therapy. Nature Reviews Drug Discovery, 11(4), 253–254.

    Google Scholar 

  • Arundel, A., & Kabla, I. (1998). What percentage of innovations are patented? Empirical estimates for European firms. Research Policy, 27(2), 127–141. https://doi.org/10.1016/S0048-7333(98)00033-X

    Article  Google Scholar 

  • Assink, M. (2006). Inhibitors of disruptive innovation capability: A conceptual model. European Journal of Innovation Management, 9(2), 215–233. https://doi.org/10.1108/14601060610663587

    Article  Google Scholar 

  • Bagozzi, R. P., Yi, Y., & Phillips, L. W. (1991). Assessing construct validity in organizational research. Administrative Science Quarterly, 36(3), 421–458. https://doi.org/10.2307/2393203

    Article  Google Scholar 

  • Bamberger, P. (2017). Construct validity research. Academy of Management Discoveries, 3(3), 235–238. https://doi.org/10.5465/amd.2017.0074

    Article  Google Scholar 

  • Beresniak, A., Auray, J., Duru, G., Medina-Lara, A., Tarricone, R., Sambuc, R., & Lamure, M. (2012). PRM14 European assessment of the validity of the QALY outcome measure: Results from the experiment conducted by the Echoutcome project. Value in Health, 15(7), A462.

    Google Scholar 

  • Beresniak, A., Medina-Lara, A., Auray, J. P., De Wever, A., Praet, J. C., Tarricone, R., & Duru, G. (2015). Validation of the underlying assumptions of the quality-adjusted life-years outcome: Results from the ECHOUTCOME European project. Pharmacoeconomics, 33(1), 61–69.

    Google Scholar 

  • Branch, S. K., & Agranat, I. (2014). “New drug” designations for new therapeutic entities: New active substance, new chemical entity, new biological entity, new molecular entity. Journal of Medicinal Chemistry, 57(21), 8729–8765. https://doi.org/10.1021/jm402001w

    Article  Google Scholar 

  • Brem, A., Maier, M., & Wimschneider, C. (2016). Competitive advantage through innovation: The case of Nespresso. European Journal of Innovation Management, 19(1), 133–148. https://doi.org/10.1108/EJIM-05-2014-0055

    Article  Google Scholar 

  • Cantner, U., Joel, K., & Schmidt, T. (2011). The effects of knowledge management on innovative success – An empirical analysis of German firms. Research Policy, 40(10), 1453–1462. https://doi.org/10.1016/j.respol.2011.06.007

    Article  Google Scholar 

  • Cardinal, L. B., & Hatfield, D. E. (2000). Internal knowledge generation: The research laboratory and innovative productivity in the pharmaceutical industry. Journal of Engineering and Technology Management, 17(3–4), 247–271. https://doi.org/10.1016/S0923-4748(00)00025-4

    Article  Google Scholar 

  • Chambers, J. D., Thorat, T., Wilkinson, C. L., & Neumann, P. J. (2017). Drugs cleared through the FDA’s Expedited Review offer greater gains than drugs approved by conventional process. Health Affairs, 36(8), 1408–1415. https://doi.org/10.1377/hlthaff.2016.1541

    Article  Google Scholar 

  • Chandy, R. K., & Tellis, G. J. (1998). Organizing for radical product innovation: The overlooked role of willingness to cannibalize. Journal of Marketing Research, 35(4), 474. https://doi.org/10.2307/3152166

    Article  Google Scholar 

  • Chang, Y.-C., Chang, H.-T., Chi, H.-R., Chen, M.-H., & Deng, L.-L. (2012). How do established firms improve radical innovation performance? The organizational capabilities view. Technovation, 32(7–8), 441–451.

    Google Scholar 

  • Chary, K. V. (2016). Expedited drug review process: Fast, but flawed. Journal of Pharmacology and Pharmacotherapeutics, 7(2), 57.

    Google Scholar 

  • Chiesa, V., Frattini, F., Lamberti, L., & Noci, G. (2009). Exploring management control in radical innovation projects. European Journal of Innovation Management, 12(4), 416–443. https://doi.org/10.1108/14601060910996909

    Article  Google Scholar 

  • Cho, S. Y., & Kim, S. K. (2017). Horizon problem and firm innovation: The influence of CEO career horizon, exploitation and exploration on breakthrough innovations. Research Policy, 46(10), 1801–1809. https://doi.org/10.1016/j.respol.2017.08.007

    Article  Google Scholar 

  • Ciani, O., Armeni, P., Boscolo, P. R., Cavazza, M., Jommi, C., & Tarricone, R. (2016). De innovatione: The concept of innovation for medical technologies and its implications for healthcare policy-making. Health Policy and Technology, 5(1), 47–64. https://doi.org/10.1016/j.hlpt.2015.10.005

    Article  Google Scholar 

  • Cohen, S. K., & Caner, T. (2016). Converting inventions into breakthrough innovations: The role of exploitation and alliance network knowledge heterogeneity. Journal of Engineering and Technology Management, 40, 29–44. https://doi.org/10.1016/j.jengtecman.2016.03.002

    Article  Google Scholar 

  • Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128–152.

    Google Scholar 

  • Collins, F. S., & Varmus, H. (2015). A new initiative on precision medicine. The New England Journal of Medicine, 372(9), 793–795. https://doi.org/10.1056/NEJMp1500523

    Article  Google Scholar 

  • Colombo, M. G., von Krogh, G., Rossi-Lamastra, C., & Stephan, P. E. (2017). Organizing for radical innovation: Exploring novel insights. Journal of Product Innovation Management, 34(4), 394–405. https://doi.org/10.1111/jpim.12391

    Article  Google Scholar 

  • Cruz-Cázares, C., Bayona-Sáez, C., & García-Marco, T. (2013). You can’t manage right what you can’t measure well: Technological innovation efficiency. Research Policy, 42(6–7), 1239–1250. https://doi.org/10.1016/j.respol.2013.03.012

    Article  Google Scholar 

  • Dabisch, I., Dethling, J., Dintsios, C.-M., Drechsler, M., Kalanovic, D., Kaskel, P., et al. (2014). Patient relevant endpoints in oncology: Current issues in the context of early benefit assessment in Germany. Health Economics Review, 4(1), 2. https://doi.org/10.1186/2191-1991-4-2

    Article  Google Scholar 

  • Dahlin, K. B., & Behrens, D. M. (2005). When is an invention really radical? Research Policy, 34(5), 717–737. https://doi.org/10.1016/j.respol.2005.03.009

    Article  Google Scholar 

  • Danneels, E., & Kleinschmidt, E. (2001). Product innovativeness from the firm’s perspective: Its dimensions and their relation with project selection and performance. Journal of Product Innovation Management, 18(6), 357–373.

    Google Scholar 

  • Darrow, J. J., Avorn, J., & Kesselheim, A. S. (2020). FDA approval and regulation of pharmaceuticals, 1983–2018. Journal of the American Medical Association, 323(2), 164–176.

    Google Scholar 

  • Davis, C., & Abraham, J. (2011). Rethinking innovation accounting in pharmaceutical regulation: A case study in the deconstruction of therapeutic advance and therapeutic breakthrough. Science, Technology and Human Values, 36(6), 791–815. https://doi.org/10.1177/0162243910374809

    Article  Google Scholar 

  • de Solà-Morales, O., Cunningham, D., Flume, M., Overton, P. M., Shalet, N., & Capri, S. (2018). Defining innovation with respect to new medicines: A systematic review from a payer perspective. International Journal of Technology Assessment in Health Care, 34(3), 224–240. https://doi.org/10.1017/S0266462318000259

    Article  Google Scholar 

  • Dewar, R., & Dutton, J. (1986). The adoption of radical and incremental innovations: An empirical analysis. Management Science, 32(11), 1422–1433.

    Google Scholar 

  • Dunlap, D., Marion, T., & Friar, J. (2013). The role of cross-national knowledge on organizational ambidexterity: A case of the global pharmaceutical industry. Management Learning. https://doi.org/10.1177/1350507613480099

    Article  Google Scholar 

  • Dunlap, D., McDonough, E. F., Mudambi, R., & Swift, T. (2016). Making up is hard to do: Knowledge acquisition strategies and the nature of new product innovation. Journal of Product Innovation Management, 33(4), 472–491. https://doi.org/10.1111/jpim.12298

    Article  Google Scholar 

  • Dunlap-Hinkler, D., Kotabe, M., & Mudambi, R. (2010). A story of breakthrough versus incremental innovation: Corporate entrepreneurship in the global pharmaceutical industry. Strategic Entrepreneurship Journal, 4(2), 106–127. https://doi.org/10.1002/sej.86

    Article  Google Scholar 

  • Eder, J., Sedrani, R., & Wiesmann, C. (2014). The discovery of first-in-class drugs: Origins and evolution. Nature Reviews Drug Discovery, 13(8), 577–587.

    Google Scholar 

  • European Medicines Agency. (n.d.). Annual Reports and Work Programmes. https://www.ema.europa.eu/ema/index.jsp?curl=pages/about_us/document_listing/document_listing_000208.jsp&mid=WC0b01ac058002933a. Last Retrieved on May 7 2018.

  • European Medicines Agency. (2013). Stivarga. https://www.ema.europa.eu/en/medicines/human/EPAR/stivarga. Last Retrieved on September 7 2020.

  • European Medicines Agency. (2014). Mekinist. https://www.ema.europa.eu/en/medicines/human/EPAR/mekinist. Last Retrieved on September 7 2020.

  • European Patent Office. (n.d.). PATSTAT. https://www.epo.org/searching-for-patents/business/patstat.html. Last Retrieved on July 30 2020.

  • Fagerberg, J., Mowery, D. C., & Nelson, R. R. (2005). The Oxford handbook of innovation. Oxford: University Press.

    Google Scholar 

  • Fernald, K., Pennings, H., Van Den Bosch, J., Commandeur, H., & Claassen, E. (2017). The moderating role of absorptive capacity and the differential effects of acquisitions and alliances on Big Pharma firms’ innovation performance. PLoS ONE, 12(2), e0172488.

    Google Scholar 

  • Fricke, F.-U., & Dauben, H. P. (2009). Health technology assessment: A perspective from Germany. Value in Health, 12, S20–S27. https://doi.org/10.1111/j.1524-4733.2009.00555.x

    Article  Google Scholar 

  • Garcia, R., & Calantone, R. (2002). A critical look at technological innovation typology and innovativeness terminology: A literature review. Journal of Product Innovation Management, 19(2), 110–132.

    Google Scholar 

  • Gemeinsamer Bundesausschuss. (n.d.). The benefit assessment of medicinal products in accordance with the german social code, book five (Sgb V), Section 35a. https://www.g-ba.de/english/benefitassessment. Last Retrieved on September 9 2020.

  • Gemeinsamer Bundesausschuss. (2016a, March). Tragende Gründe zum Beschluss des Gemeinsamen Bundesausschusses über eine Änderung der Arzneimittel-Richtlinie (AM-RL): Anlage XII - Beschlüsse über die Nutzenbewertung von Arzneimitteln mit neuen Wirkstoffen nach § 35a SGB V - Regorafenib. https://www.g-ba.de/downloads/40-268-3667/2016-03-17_AM-RL-XII_Regorafenib_2015-10-01-D-189_TrG.pdf. Last Retrieved on September 7 2020.

  • Gemeinsamer Bundesausschuss. (2016b). Tragende Gründe zum Beschluss des Gemeinsamen Bundesausschusses über eine Änderung der Arzneimittel-Richtlinie (AM-RL): Anlage XII - Beschlüsse über die Nutzenbewertung von Arzneimitteln mit neuen Wirkstoffen nach § 35a SGB V - Trametinib. https://www.g-ba.de/downloads/40-268-3668/2016-03-17_AM-RL-XII_Trametinib_2015-10-01-D-183_TrG.pdf. Last Retrieved on September 7 2020.

  • Gopalakrishnan, S., & Damanpour, F. (1997). A review of innovation research in economics, sociology and technology management. Omega, 25(1), 15–28.

    Google Scholar 

  • Green, S. G., Gavin, M. B., & Aiman-Smith, L. (1995). Assessing a multidimensional measure of radical technological innovation. IEEE Transactions on Engineering Management, 42(3), 203–214. https://doi.org/10.1109/17.403738

    Article  Google Scholar 

  • Hagedoorn, J., & Cloodt, M. (2003). Measuring innovative performance: Is there an advantage in using multiple indicators? Research Policy, 32(8), 1365–1379.

    Google Scholar 

  • Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24.

    Google Scholar 

  • Hair, J. F., Jr., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2016). A primer on partial least squares structural equation modeling (PLS-SEM). London: Sage Publications.

    MATH  Google Scholar 

  • Hernandez-Espallardo, M., Molina-Castillo, F., & Rodriguez-Orejuela, A. (2012). Learning processes, their impact on innovation performance and the moderating role of radicalness. European Journal of Innovation Management, 15(1), 77–98. https://doi.org/10.1108/14601061211192843

    Article  Google Scholar 

  • Herpers, M., & Dintsios, C.-M. (2018). Methodological problems in the method used by IQWiG within early benefit assessment of new pharmaceuticals in Germany. The European Journal of Health Economics, 2(1), 45–57.

    Google Scholar 

  • Hohberger, J. (2016). Does it pay to stand on the shoulders of giants? An analysis of the inventions of star inventors in the biotechnology sector. Research Policy, 45(3), 682–698.

    Google Scholar 

  • Hwang, T. J., Franklin, J. M., Chen, C. T., Lauffenburger, J. C., Gyawali, B., Kesselheim, A. S., & Darrow, J. J. (2018). Efficacy, safety, and regulatory approval of food and drug Administration-designated breakthrough and nonbreakthrough cancer medicines. Journal of Clinical Oncology, 36(18), 1805–1812.

    Google Scholar 

  • Jayadev, A., & Stiglitz, J. (2009). Two ideas to increase innovation and reduce pharmaceutical costs and prices. Health Affairs, 28(1), 165–168. https://doi.org/10.1377/hlthaff.28.1.w165

    Article  Google Scholar 

  • Jiménez-Jimenez, D., Sanz Valle, R., & Hernandez-Espallardo, M. (2008). Fostering innovation: The role of market orientation and organizational learning. European Journal of Innovation Management, 11(3), 389–412. https://doi.org/10.1108/14601060810889026

    Article  Google Scholar 

  • Johannessen, J., Olsen, B., & Lumpkin, G. T. (2001). Innovation as newness: What is new, how new, and new to whom? European Journal of Innovation Management, 4(1), 20–31. https://doi.org/10.1108/14601060110365547

    Article  Google Scholar 

  • Kanter, R. (1983). The change masters. New York: Simon and Schuster.

    Google Scholar 

  • Kaplan, S., & Vakili, K. (2015). The double-edged sword of recombination in breakthrough innovation. Strategic Management Journal, 36(10), 1437–1457.

    Google Scholar 

  • Kennedy, I. (2009). Appraising the value of innovation and other benefits: A short study for London: NICE.

  • Kesselheim, A. S., Wang, B., & Avorn, J. (2013). Defining “innovativeness” in drug development: A systematic review. Clinical Pharmacology and Therapeutics, 94(3), 336–348. https://doi.org/10.1038/clpt.2013.115

    Article  Google Scholar 

  • Keupp, M. M., & Gassmann, O. (2013). Resource constraints as triggers of radical innovation: Longitudinal evidence from the manufacturing sector. Research Policy, 42(8), 1457–1468. https://doi.org/10.1016/j.respol.2013.04.006

    Article  Google Scholar 

  • Kneller, R. (2010). The importance of new companies for drug discovery: Origins of a decade of new drugs. Nature Reviews Drug Discovery, 9(11), 867–882. https://doi.org/10.1038/nrd3251

    Article  Google Scholar 

  • Kuhn, J., Younge, K., & Marco, A. (2020). Patent citations reexamined. The RAND Journal of Economics, 51(1), 109–132.

    Google Scholar 

  • Lauenroth, V. D., & Stargardt, T. (2017). Pharmaceutical pricing in Germany: How is value determined within the scope of AMNOG? Value in Health, 20(7), 927–935. https://doi.org/10.1016/j.jval.2017.04.006

    Article  Google Scholar 

  • Lazzeri, F., Pisano, G. P. (2014). The Organizational and geographic drivers of absorptive capacity: An empirical analysis of pharmaceutical R&D laboratories. Harvard Business School Technology & Operations Mgt. Unit Working Paper No. 14–098.

  • Leverkus, F., & Chuang-Stein, C. (2016). Implementation of AMNOG: An industry perspective. Biometrical Journal, 58(1), 76–88. https://doi.org/10.1002/bimj.201300256

    Article  MathSciNet  Google Scholar 

  • Lexchin, J. (2016). How safe and innovative are first-in-class drugs approved by health Canada: A cohort study. Healthcare Policy, 12(2), 65.

    Google Scholar 

  • Malva, A. D., Kelchtermans, S., Leten, B., & Veugelers, R. (2015). Basic science as a prescription for breakthrough inventions in the pharmaceutical industry. Journal of Technology Transfer, 40(4), 670–695. https://doi.org/10.1007/s10961-014-9362-y

    Article  Google Scholar 

  • McDermott, C. M., & O’Connor, G. C. (2002). Managing radical innovation: An overview of emergent strategy issues. Journal of Product Innovation Management, 19(6), 424–438.

    Google Scholar 

  • Midgley, D. F., & Dowling, G. R. (1978). Innovativeness: The concept and its measurement. Journal of Consumer Research, 4(4), 229–242.

    Google Scholar 

  • Morgan, S., Lopert, R., & Greyson, D. (2008). Toward a definition of pharmaceutical innovation. Open Medicine, 2(1), e4.

    Google Scholar 

  • Mostaghim, S. R., Gagne, J. J., & Kesselheim, A. S. (2017). Safety related label changes for new drugs after approval in the US through expedited regulatory pathways: Retrospective cohort study. British Medical Journal, 358, j3837.

    Google Scholar 

  • Noblet, J.-P., Simon, E., & Parent, R. (2011). Absorptive capacity: A proposed operationalization. Knowledge Management Research and Practice, 9(4), 367–377. https://doi.org/10.1057/kmrp.2011.26

    Article  Google Scholar 

  • OECD (2015). New Sources of Growth: Phase 2, Knowledge-based Capital. Enquiries into Intellectual Property's Economic Impact. Retrieved August 23 2020 from https://www.oecd.org/sti/ieconomy/intellectual-property-economic-impact.htm.

  • Olson, M. K. (2008). The risk we bear: the effects of review speed and industry user fees on new drug safety. Journal of Health Economics, 27(2), 175–200.

    Google Scholar 

  • Orianaa, C., Patrizioa, A., Robertaa, B. P., Mariannaa, C., Claudioa, J., & Rosanna, T. (2016). De innovatione: The concept of innovation for medical technologies and its implications for healthcare policy-making. Health Policy and Technology, 5(1), 47–64.

    Google Scholar 

  • Ouellette, L. L. (2010). How many patents does it take to make a drug? Follow-on pharmaceutical patents and university licensing. Michigan Telecommunications and Technology Law Review, 17(299), 2010–2011.

    Google Scholar 

  • Panteli, D., Eckhardt, H., Nolting, A., Busse, R., & Kulig, M. (2015). From market access to patient access: Overview of evidence-based approaches for the reimbursement and pricing of pharmaceuticals in 36 European countries. Health Research Policy and Systems. https://doi.org/10.1186/s12961-015-0028-5

    Article  Google Scholar 

  • Phene, A., Fladmoe-Lindquist, K., & Marsh, L. (2006). Breakthrough innovations in the US biotechnology industry: The effects of technological space and geographic origin. Strategic Management Journal, 27(4), 369–388.

    Google Scholar 

  • Pinnow, E., Amr, S., Bentzen, S. M., Brajovic, S., Hungerford, L., & George DalPan, D. M. G. (2018). Postmarket safety outcomes for new molecular entity (NME) drugs approved by the Food and Drug Administration between 2002 and 2014. Clinical Pharmacology and Therapeutics, 104(2), 390–400.

    Google Scholar 

  • Postma, M. J., Boersma, C., Vandijck, D., Vegter, S., Le, H. H., & Annemans, L. (2011). Health technology assessments in personalized medicine: Illustrations for cost–effectiveness analysis. Expert Review of Pharmacoeconomics and Outcomes Research, 11(4), 367–369. https://doi.org/10.1586/erp.11.50

    Article  Google Scholar 

  • Salavou, H. (2004). The concept of innovativeness: Should we need to focus? European Journal of Innovation Management, 7(1), 33–44. https://doi.org/10.1108/14601060410515628

    Article  Google Scholar 

  • Scheithauer, W. (2012). Faculty opinions recommendation of Grothey A et al. Lancet. Faculty Opinions. https://doi.org/10.3410/f.717965145.793466450

    Article  Google Scholar 

  • Schlette, S., & Hess, R. (2013). Issues in international health policy. Issue brief (Commonwealth Fund), 29, 1–9.

    Google Scholar 

  • Schmid, E. F., & Smith, D. A. (2005). Managing innovation in the pharmaceutical industry. Journal of Commercial Biotechnology, 12(1), 50–57.

    Google Scholar 

  • Shane, S. (2001). Technological opportunities and new firm creation. Management Science, 47(2), 205–220.

    Google Scholar 

  • Singh, J., & Fleming, L. (2010). Lone inventors as sources of breakthroughs: Myth or reality? Management Science, 56(1), 41–56. https://doi.org/10.1287/mnsc.1090.1072

    Article  Google Scholar 

  • Skipka, G., Wieseler, B., Kaiser, T., Thomas, S., Bender, R., Windeler, J., et al. (2016). Methodological approach to determine minor, considerable, and major treatment effects in the early benefit assessment of new drugs: Determine minor, considerable and major treatment effects. Biometrical Journal, 58(1), 43–58. https://doi.org/10.1002/bimj.201300274

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, K. J., & Roberts, M. S. (2000). The cost–effectiveness of sildenafil. Annals of Internal Medicine, 132, 933–937.

    Google Scholar 

  • Sorescu, A. B., Chandy, R. K., & Prabhu, J. C. (2003). Sources and financial consequences of radical innovation: Insights from pharmaceuticals. Journal of Marketing, 67(4), 82–102.

    Google Scholar 

  • Stafford, R. S., Wagner, T. H., & Lavori, P. W. (2009). New, but not improved? Incorporating comparative-effectiveness information into FDA labeling. New England Journal of Medicine, 361(13), 1230–1233. https://doi.org/10.1056/NEJMp0906490

    Article  Google Scholar 

  • Sternitzke, C. (2010). Knowledge sources, patent protection, and commercialization of pharmaceutical innovations. Research Policy, 39(6), 810–821.

    Google Scholar 

  • Suzuki, O., & Methe, D. T. (2014). Local search, exploration frequency, and exploration valuableness: Evidence from new pharmaceuticals development. International Journal of Innovation Management, 18(02), 1450014. https://doi.org/10.1142/S1363919614500145

    Article  Google Scholar 

  • thinkBiotech LLC. (n.d.). Drug patent watch. https://www.drugpatentwatch.com. Last Retrieved on July 7 2020.

  • Tijssen, R. J. W. (2001). Global and domestic utilization of industrial relevant science: Patent citation analysis of science-technology interactions and knowledge flows. Research Policy, 30(1), 35–54. https://doi.org/10.1016/S0048-7333(99)00080-3

    Article  Google Scholar 

  • Trajtenberg, M. (1990). A penny for your quotes: Patent citations and the value of innovations. The Rand Journal of Economics, 21, 172–187.

    Google Scholar 

  • Trajtenberg, M., Henderson, R., & Jaffe, A. (1997). University versus corporate patents: A window on the basicness of invention. Economics of Innovation and New Technology, 5(1), 19–50.

    Google Scholar 

  • Tushman, M. L., & Anderson, P. (1986). Technological discontinuities and organizational environments. Administrative Science Quarterly, 31(3), 439. https://doi.org/10.2307/2392832

    Article  Google Scholar 

  • US Food & Drug Administration. (n.d.-a). Orange Book: Approved drug products with therapeutic equivalence evaluations. https://www.accessdata.fda.gov/scripts/cder/ob/index.cfm. Last Retrieved on August 20 2020.

  • US Food & Drug Administration. (n.d.-b). Purple book database of licensed biological products. https://purplebooksearch.fda.gov. Last Retrieved on August 20 2020.

  • US Food & Drug Administration. (n.d.-c). Drugs@FDA: FDA-Approved Drugs. https://www.fda.gov/drugsatfda. Last Retrieved on May 7 2018.

  • US Food & Drug Administration. (2012, September 20). Center for Drug Evaluation and Research Application Number 203085Orig1s000 Summary Review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/203085Orig1s000SumR.pdf. Last Retrieved on September 7 2020.

  • US Food & Drug Administration. (2013, May 28). Center for Drug Evaluation and Research Application Number 204114Orig1s000 Summary Review. https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/204114Orig1s000SumR.pdf. Last Retrieved on September 7 2020.

  • US Food & Drug Administration. (2018, February 23). Fast Track, Breakthrough Therapy, Accelerated Approval, Priority Review. https://www.fda.gov/patients/learn-about-drug-and-device-approvals/fast-track-breakthrough-therapy-accelerated-approval-priority-review. Last Retrieved on September 5 2020.

  • US Food & Drug Administration. (2020). Advancing health through innovation: New drug therapy approvals 2019. https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/new-drug-therapy-approvals-2019. Last Retrieved on August 20 2020.

  • US National Library of Medicine. (2015, June 24). Patients with metastatic colorectal cancer treated with regorafenib or placebo after failure of standard therapy. https://clinicaltrials.gov/ct2/show/NCT01103323. Last Retrieved on September 7 2020.

  • US National Library of Medicine. (2018, April 5). GSK1120212 vs Chemotherapy in advanced or metastatic BRAF V600E/K Mutation-positive Melanoma. https://clinicaltrials.gov/ct2/show/NCT01245062. Last Retrieved on September 7 2020.

  • Verhoeven, D., Bakker, J., & Veugelers, R. (2016). Measuring technological novelty with patent-based indicators. Research Policy, 45(3), 707–723. https://doi.org/10.1016/j.respol.2015.11.010

    Article  Google Scholar 

  • Wallach, J. D., Ross, J. S., & Naci, H. (2018). The US Food and Drug Administration’s expedited approval programs: Evidentiary standards, regulatory trade-offs, and potential improvements. Clinical Trials, 15(3), 219–229.

    Google Scholar 

  • Wang, C. L., & Ahmed, P. K. (2004). The development and validation of the organisational innovativeness construct using confirmatory factor analysis. European Journal of Innovation Management, 7(4), 303–313.

    Google Scholar 

  • Weinstein, M. C., Russell, L. B., Gold, M. R., & Siegel, J. E. (1996). Cost-effectiveness in health and medicine. New York: Oxford University Press.

    Google Scholar 

  • Wieseler, B., McGauran, N., & Kaiser, T. (2019). New drugs: Where did we go wrong and what can we do better? British Medical Journal, 366, l4340.

    Google Scholar 

  • Yamin, M., & Otto, J. (2004). Patterns of knowledge flows and MNE innovative performance. Journal of International Management, 10(2), 239–258. https://doi.org/10.1016/j.intman.2004.02.001

    Article  Google Scholar 

  • Zucker, L. G., Darby, M. R., & Armstrong, J. S. (2002). Commercializing knowledge: University science, knowledge capture, and firm performance in biotechnology. Management Science, 48(1), 138–153. https://doi.org/10.1287/mnsc.48.1.138.14274

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Stiller.

Additional information

The paper represents the author’s personal opinion and does not necessarily reflect the views of F. Hoffmann – La Roche AG or its staff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stiller, I., van Witteloostuijn, A. & Cambré, B. Do current radical innovation measures actually measure radical drug innovation?. Scientometrics 126, 1049–1078 (2021). https://doi.org/10.1007/s11192-020-03778-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-020-03778-x

Keywords

Navigation