Skip to main content
Log in

Plasma physics and astrophysics: retrospects, state-of-the art, and prospects

  • CLASSICAL AND QUANTUM PLASMAS
  • Published:
Rendiconti Lincei. Scienze Fisiche e Naturali Aims and scope Submit manuscript

Abstract

Within the special issue “Classical and quantum plasmas: matter under extreme conditions” a series of papers are included that were presented at the international workshop “Plasma Physics and Astrophysics up to 2020 and beyond”. This meeting was held on October 7th–8th 2019 at the Physics Department of the Università della Calabria in Rende (Italy) and was organised by the Physics Department “Astrophysics, Geophysics and Plasma Group” in connection with the celebration of Pierluigi Veltri’s 70th birthday. The goal of this interdisciplinary workshop was to review some of the main achievements in plasma physics in the last five decades from laboratory to space and astrophysical plasmas and to discuss future developments. It was attended by experimentalists, theoreticians and by scientists involved in numerical plasma modelling with the aim of promoting the exchange of ideas and collaborations between different communities working on plasma physics in different contexts. The participants discussed fundamental physics aspects of fluid and plasma turbulence, of magnetic field line reconnection, of shock wave dynamics and of kinetic and nonlinear plasma phenomena highlighting new results and novel approaches, as well as exchanging ideas between different branches of plasma physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. These propagating magnetic structures with switching polarity, obtained in this alpha-type dynamo, are Parker dynamo waves as those obtained solving the magnetohydrodynamic equations both in the kinematic and in the nonlinear regime (Nigro et al. 2017; Pongkitiwanichakul et al. 2016).

References

  • Abbott BP, Scientific Collaboration LIGO, Collaboration V (2017) Observation of gravitational waves from a binary neutron star inspiral. Phys Rev Lett 119:161101

    CAS  Google Scholar 

  • Abry P, Goncalvès P, Flandrin P (1995) Wavelets, spectrum analysis and 1/f processes. In: Antoniadis and Oppenheim (ed) Wavelets and Statistics. Lecture Notes in Statistics, New York, 103:15–30

  • Angioi A, Di Piazza A (2019) On quantum electrodynamic processes in plasmas interacting with strong lasers. Rend Fis Acc Lincei 30:17

    Google Scholar 

  • Antoni V, Desideri D, Martines E, Serianni G, Tramontin L (1997) Plasma potential well and velocity shear layer at the edge of reversed field pinch plasmas. Phys Rev Lett 79:4814

    CAS  Google Scholar 

  • Antoni V, Carbone V, Cavazzana R, Regnoli G, Vianello N, Spada E, Fattorini L, Martines E, Serianni G, Spolaore M, Tramontin L, Veltri P (2001) Transport processes in reversed-field-pinch plasmas: inconsistency with the self-organized-criticality paradigm. Phys Rev Lett 87:045001

    CAS  Google Scholar 

  • Atzeni S, Meyer-ter-Vehn J (2004) The physics of inertial fusion. Clarendon Press, Oxford

    Google Scholar 

  • Atzeni S, Schiavi A, Temporal M (2004) Converging geometry Rayleigh Taylor instability and central ignition of inertial confinement fusion targets. Plasma Phys Control Fusion 46:B111

    CAS  Google Scholar 

  • Atzeni S, Schiavi A, Marocchino A (2011) Studies on the robustness of shock-ignited laser fusion targets. Plasma Phys Control Fusion 53(3):035010

    Google Scholar 

  • Atzeni S, Schiavi A, Antonelli L, Serpi A (2019) Hydrodynamic studies of high gain shock ignition targets: effect of low- to intermediate-mode asymmetries. Eur Phys J D 73(11):243

    CAS  Google Scholar 

  • Baldwin KA, Scase MM, Hill RJA (2015) The inhibition of Rayleigh–Taylor instability by rotation. Sci Rep 5:11706

    Google Scholar 

  • Bale SD, Kellogg PJ, Mozer FS, Horbury TS, Reme H (2005) Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys Rev Lett 94(21):215002

    CAS  Google Scholar 

  • Bandyopadhyay R, Oughton S, Wan M, Matthaeus WH, Chhiber R, Parashar TN (2018) Finite dissipation in anisotropic magnetohydrodynamic turbulence. Phys Rev X 8:041052

    CAS  Google Scholar 

  • Bavassano B, Pietropaolo E, Bruno R (2000) Alfvénic turbulence in the polar wind: a statistical study on cross helicity and residual energy variations. J Geophys Res 105(A6):12697–12704

    Google Scholar 

  • Berger MA (1991) Generation of coronal magnetic fields by random surface motions. I - Mean square twist and current density. Astron Astrophys 252(1):369–376

    Google Scholar 

  • Betti R et al (2010) Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinementa. Phys Plasmas 17(5):058102

    Google Scholar 

  • Bertin G, Varri AL (2008) The construction of non-spherical models of quasi-relaxed stellar systems. Astrophys J 689:1005–1019

    Google Scholar 

  • Bianchini P, Varri AL, Bertin G, Zocchi A (2013) Rotating globular clusters. Astrophys J 772(67):1–19

    Google Scholar 

  • Bodo G, Mamatsashvili G, Rossi P, Mignone A (2013) Linear stability analysis of magnetized relativistic jets: the non-rotating case. Mon Not R Astron Soc 434:3030–3046

    Google Scholar 

  • Boffetta G, Mazzino A, Musacchio S (2016) Rotating Rayleigh–Taylor turbulence. Phys Rev Fluids 1:054405

    Google Scholar 

  • Boffetta G, Mazzino A (2017) Incompressible Rayleigh-Taylor turbulence. Annu Rev Fluid Mech 49:119

    Google Scholar 

  • Boffetta G, Magnani M, Musacchio S (2019) Suppression of Rayleigh–Taylor turbulence by time periodic acceleration. Phys Rev E 99:033110

    CAS  Google Scholar 

  • Bonfiglio D, Veranda M, Cappello S, Escande DF, Chacón L (2013) Experimental-like helical self-organization in reversed-field pinch modelling. Phys Rev Lett 111:085002

    CAS  Google Scholar 

  • Brizard AJ, Hahm TS (2007) Foundations of nonlinear gyrokinetic theory. Rev Mod Phys 79:421

    Google Scholar 

  • Bourouaine S, Chandran BDG (2013) Observational test of stochastic heating in low-\(\beta\) fast-solar-wind streams. Astrophys J 774(2):96

    Google Scholar 

  • Bucciantini N, Del Zanna L (2013) Fully covariant mean-field dynamo closure for numerical 3 + 1 resistive GRMHD. Mon Not R Astron Soc 428:71

    Google Scholar 

  • Bugli M, Del Zanna L, Bucciantini N (2014) Dynamo action in thick discs around Kerr black holes: high-order resistive GRMHD simulations. Mon Not R Astron Soc 440:L41

    Google Scholar 

  • Bulanov SV et al (2013) Relativistic mirrors in plasmas-novel results and perspectives. Physics Uspekhi 56:429–464

    Google Scholar 

  • Cappello S, Biskamp D (1996) Reconnection processes and scaling laws in reversed field pinch magnetohydrodynamics. Nucl Fusion 36:571

    Google Scholar 

  • Capet X, McWilliams JC, Molemaker MJ, Shchepetkin AF (2008) Mesoscale to submesoscale transition in the California current system. Part I: flow structure, Eddy flux, and observational tests. J Phys Oceanogr 38(1):29–43

    Google Scholar 

  • Carbone V, Regnoli G, Martines E, Antoni V (2000) Intermittency and self-similarity in plasma edge fluctuations. Phys Plasmas 7:445

    CAS  Google Scholar 

  • Carbone V, Sorriso-Valvo L, Martines E, Antoni V, Veltri P (2000) Intermittency and turbulence in a magnetically confined fusion plasma. Phys Rev E 62:R49(R)

    Google Scholar 

  • Carnevale GF, Orlandi P, Zhou Y, Kloosterziel RC (2002) Rotational suppression of Rayleigh–Taylor instability. J Fluid Mech 457:181

    CAS  Google Scholar 

  • Chandran BDG, Li B, Rogers BN, Quataert E, Germaschewski K (2010) Perpendicular ion heating by low-frequency Alfvén-wave turbulence in the solar wind. Astrophys J 720:503–5015

    CAS  Google Scholar 

  • Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. International Series of Monographs on Physics. Clarendon, Oxford

    Google Scholar 

  • Chang O, Gary PS, Wang J (2013) Whistler turbulence at variable electron beta: three-dimensional particle-in-cell simulations. J Geophys Res Space Phys 118(6):2824–2833

    Google Scholar 

  • Chen L, Wu DJ, Huang J (2013) Kinetic Alfvén wave instability driven by field-aligned currents in a low-\(\beta\) plasma. J Geophys Res Space Phys 118:2951

    Google Scholar 

  • Chertkov M (2003) Phenomenology of Rayleigh–Taylor turbulence. Phys Rev Lett 91:115001

    Google Scholar 

  • Chiuderi C (1993) Keys to understanding the corona. In ESA, Scientific Requirements for Future Solar-Physics Space Missions, pp 25–32

  • Corbelli E, Braine J, Bandiera R, Brouillet N, Combes F, Druard C, Gratier P, Mata J, Schuster K, Xilouris M, Palla F (2017) From molecules to young stellar clusters: the star formation cycle across the disk of M 33. Astron Astrophys 601:146

    Google Scholar 

  • Corbelli E, Elmegreen B, Braine J, Thilker D (2018) Probability distribution functions of gas surface density in M 33. Astron Astrophys 617:125

    Google Scholar 

  • Corbelli E, Braine J, Giovanardi C (2019) Rise and fall of molecular clouds across the M 33 disk. Astron Astrophys 622:171

    Google Scholar 

  • D’Asaro EA, Lien R-C, Henyey F (2007) J Phys Oceanogr 37(7):1956–1967

    Google Scholar 

  • Dahlburg RB, Liu J-H, Klimchuk JA, Nigro G (2009) Explosive instability and coronal heating. Astrophys J 704(2):1059–1064

    CAS  Google Scholar 

  • Dahlburg RB, Einaudi G, Rappazzo AF, Velli M (2012) Turbulent coronal heating mechanisms: coupling of dynamics and thermodynamics. Astron Astrophys 544(L20):4

  • Dahlburg RB, Einaudi G, Taylor BD, Ugarte-Urra I, Warren HP, Rappazzo AF, Velli M (2016) Observational signatures of coronal loop heating and cooling driven by footpoint shuffling. Astrophys J 817(1):47

    Google Scholar 

  • Dahlburg RB, Einaudi G, Ugarte-Urra I, Rappazzo AF, Velli M (2018) Dependence of coronal loop temperature on loop length and magnetic field strength. Astrophys J 868(2):116

    CAS  Google Scholar 

  • Dasso S, Milano LJ, Matthaeus WH, Smith CW (2005) Anisotropy in fast and slow solar wind fluctuations. Astrophys J Lett 635(2):L181–L184

    Google Scholar 

  • Daubechies I (1988) Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math 41:909

    Google Scholar 

  • de Vita R, Bertin G, Zocchi A (2016) A class of spherical, truncated, anisotropic models for application to globular clusters. Astron Astrophys 590:A16.1–A16.14

    Google Scholar 

  • de Kármán T, Howarth L (1938) On the statistical theory of isotropic turbulence. Proc R Soc A 164:192–215

    Google Scholar 

  • Del Zanna L (2020) One hundred years of testing general relativity: from Eddington’s eclipse to general relativistic MHD. Rend. Fis. Acc. Lincei XX

  • Del Zanna L et al (2007) ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics. Astron Astrophys 473:11

    Google Scholar 

  • Dimonte G, Schneider M (1996) Turbulent Rayleigh–Taylor instability experiments with variable acceleration. Phys Rev E 54:3740

    CAS  Google Scholar 

  • Dobbs CL, Pettitt AR, Corbelli E, Pringle JE (2018) Simulations of the flocculent spiral M33: what drives the spiral structure? Mon Not R Astron Soc 478(3):3793–3808

    CAS  Google Scholar 

  • Dobbs CL, Rosolowsky E, Pettitt AR, Braine J, Corbelli E, Sun J (2019) Comparing the properties of GMCs in M33 from simulations and observations. Mon Not R Astron Soc 485:4997

    CAS  Google Scholar 

  • Di Piazza A, Müller C, Hatsagortsyan KZ, Keitel CH (2012) Extremely high-intensity laser interactions with fundamental quantum systems. Rev Mod Phys 84:1177

    Google Scholar 

  • Dobrowolny M, Mangeney A, Veltri P (1980) Fully developed anisotropic hydromagnetic turbulence in interplanetary space. Phys Rev Lett 45:144–147

    Google Scholar 

  • Einaudi G, Velli M (1994) Nanoflares and current sheet dissipation. Space Sci Rev 68(1–4):97–102

    Google Scholar 

  • Einaudi G, Velli M, Politano H, Pouquet A (1996) Energy release in a turbulent corona. Astrophys J Lett 457:L113

    Google Scholar 

  • Escande DF, Martin P, Ortolani S, Buffa A, Franz P, Marrelli L, Martines E, Spizzo G, Cappello S, Murari A, Pasqualotto R, Zanca P (2000) Quasi-single-helicity reversed-field-pinch plasmas. Phys Rev Lett 85:1662

    CAS  Google Scholar 

  • Feraco F, Marino R, Pumir A, Primavera L, Mininni PD, Pouquet A, Rosenberg D (2018) Vertical drafts and mixing in stratified turbulence: sharp transition with Froude number. Europhys Lett 123(4):44002

    Google Scholar 

  • Filbet F, Sonnendrücker E, Bertrand P (2001) Conservative numerical schemes for the Vlasov equation. J Comput Phys 172(1):166–187

    CAS  Google Scholar 

  • Fisk LA, Schwadron NA (2001) The behavior of the open magnetic field of the sun. Astrophys J 560(1):425

    Google Scholar 

  • Fisk LA (2005) The open magnetic flux of the sun. I. Transport by reconnections with coronal loops. Astrophys J 626(1):563

    Google Scholar 

  • Fisk LA, Kasper JC (2020) Global circulation of the open magnetic flux of the sun. The Astrophysical Journal Letters 894(1):L4

    Google Scholar 

  • Galsgaard K, Nordlund A (1996) Heating and activity of the solar corona. 1 Boundary shearing of an initially homogeneous magnetic field. J Geophys Res 101(A6):13445–13460

    Google Scholar 

  • Gold T (1964) The Physics of Solar Flares. In: Hess (ed) NASA Sp. 50: 380

  • Gregori et al (2012) Generation of scaled protogalactic seed magnetic fields in laser-produced shock waves. Nature 481(738):480

    CAS  Google Scholar 

  • Grappin R, Velli M, Mangeney A (1993) Nonlinear wave evolution in the expanding solar wind. Phys Rev Lett 70(14):2190

    CAS  Google Scholar 

  • Haan SW, Amendt PA, Dittrich TR, Hammel BA, Hatchett SP, Herrmann MC, Hurricane OA, Jones OS, Lindl JD, Marinak MM, Munro D, Pollaine SM, Salmonson JD, Strobel GL, Suter LJ (2004) Design and simulations of indirect drive ignition targets for NIF. Nucl Fusion 44(12):S171

    CAS  Google Scholar 

  • Hendrix DL, van Hoven G (1996) Magnetohydrodynamic turbulence and implications for solar coronal heating. Astrophys J 467:887

    Google Scholar 

  • Herrmann MC, Tabak M, Lindl JD (2001) A generalized scaling law for the ignition energy of inertial confinement fusion capsules. Nucl Fusion 41(1):99

    CAS  Google Scholar 

  • Hicks D et al (2012) Implosion dynamics measurements at the National Ignition Facility. Phys Plasmas 19(12):122702

    Google Scholar 

  • Hollweg JV, Isenberg PA (2002) Generation of the fast solar wind: a review with emphasis on the resonant cyclotron interaction. J Geophys Res Space Phys 107(A7):1147

    Google Scholar 

  • Howes GG, Steven C, Dorland W, Hammett GW, Quataert E, Schekochihin AA (2006) Astrophysical gyrokinetics: basic equations and linear theory. Astrophys J 651:1

    Google Scholar 

  • Howes GG, Dorland W, Cowley SC, Hammett GW, Quataert E, Schekochihin AA, Tatsuno T (2008) Kinetic simulations of magnetized turbulence in astrophysical plasmas. Phys Rev Lett 100(6):065004

    CAS  Google Scholar 

  • Hurricane O et al (2014) Fuel gain exceeding unity in an inertially confined fusion implosion. Nature 506:343

    CAS  Google Scholar 

  • Joggerst CC, Woosley SE, Heger A (2009) Mixing in zero- and solar-metallicity supernovae. Astrophys J 693(2):1780

    CAS  Google Scholar 

  • Kasper JC, Maruca BA, Stevens ML, Zaslavsky A (2013) Sensitive test for ion-cyclotron resonant heating in the solar wind. Phys Rev Lett 110(9):091102

    Google Scholar 

  • Katul GG, Albertson JD, Chu CR, Parlange MB (1994) In: Foufoula & Kumar (ed) Wavelets in Geophysics. Academic, New York, p 81

  • Kolmogorov A (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Doklady Akademiia Nauk SSSR 30:301

    Google Scholar 

  • Le Pape S et al (2018) Fusion energy output greater than the kinetic energy of an imploding shell at the National Ignition Facility. Phys Rev Lett 120(24):245003

    Google Scholar 

  • Li C et al (2019) Collisionless shocks driven by supersonic plasma flows with self-generated magnetic fields. Phys Rev Lett 123(5):055002

    CAS  Google Scholar 

  • Lindl JD (1995) Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys Plasmas 2(11):3933

    CAS  Google Scholar 

  • Lindl J, Landen O, Edwards J, Moses E, the NIC Team (2014) Review of the National Ignition Campaign 2009–2012. Physics of Plasmas 21(2):020501

  • Livescu D, Wei T (2012) Direct Numerical Simulations of Rayleigh-Taylor instability with gravity reversal. Seventh International Conference on ICCFDI7C-C20F1D27–2304 Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii, July 9-13

  • Longcope DW, Sudan RN (1994) Evolution and statistics of current sheets in coronal magnetic loops. Astrophys J 437:491

    Google Scholar 

  • Lorenzini R, Martines E, Piovesan P, Terranova D, Zanca P, Zuin M, Alfier A, Bonfiglio D, Bonomo F, Canton A, Cappello S, Carraro L, Cavazzana R, Escande DF, Fassina A, Franz P, Gobbin M, Innocente P, Marrelli L, Pasqualotto R, Puiatti ME, Spolaore M, Valisa M, Vianello N, Martin P, RFX-mod team and collaborators (2009) Self-organized helical equilibria as a new paradigm for ohmically heated fusion plasmas. Nat Phys 5:570–574

    CAS  Google Scholar 

  • Mahrt L (1989) Intermittency of atmospheric turbulence. J Atmos Sci 46:79

    Google Scholar 

  • Mangeney A, Salem C, Veltri P, Cecconi B, (2001) Intermittency in the Solar Wind Turbulence and the Haar Wavelet Transform. Sheffield Space Plasma Meeting: Multipoint Measurements versus Theory, Les Woolliscroft Memorial Conference held 24–26 April, (2001) in Sheffield. UK, European Space Agency

  • Marino R, Rosenberg D, Herbert C, Pouquet A (2015) Interplay of waves and eddies in rotating stratified turbulence and the link with kinetic-potential energy partition. Europhys Lett 112(4):49001

    Google Scholar 

  • Matthaeus WH, Parashar TN, Minping W, Wu P (2016) Turbulence and proton-electron heating in kinetic plasma. The Astrophysical Journal Letters 827(1):L7

    Google Scholar 

  • Meyer Y (1989) In: Combes, Grossmann, & Tchamitchian (ed) Wavelets. Time-Frequency Methods and Phase Space, Springer, Berlin, p 21

  • Mignone A, Bodo G, Massaglia S, Matsakos T, Tesileanu O, Zanni C, Ferrari A (2007) PLUTO: a numerical code for computational astrophysics. Astrophys J Suppl Ser 170(1):228–242

    Google Scholar 

  • Mignone A, Bodo G, Vaidya B, Mattia G (2018) A particle module for the PLUTO Code. I. An implementation of the MHD-PIC equations. Astrophys J 859:13

    Google Scholar 

  • Mikic Z, Schnack DD, van Hoven G (1989) Creation of current filaments in the solar corona. Astrophys J 338:1148

    Google Scholar 

  • Millot M et al (2018) Experimental evidence for superionic water ice using shock compression. Nat Phys 14(3):297

    CAS  Google Scholar 

  • Moffatt HK, Tsinober A (1989) Topological Fluid Mechanics. Cambridge University Press, Proceedings of the IUTAM Symposium, Cambridge, UK, 13–18 August

  • Montagud-Camps V, Grappin R, Verdini A (2018) Turbulent heating between 0.2 and 1 AU: a numerical study. Astrophys J 853(2):153

    Google Scholar 

  • Montagud-Camps V, Grappin R, Verdini A (2020) Comparing turbulent cascades and heating vs spectral anisotropy in solar wind via direct simulations. Astrophys J

  • Mora P, Jr. Antonsen TM (1996) Electron cavitation and acceleration in the wake of an ultraintense, self-focused laser pulse. Phys Rev E 53:R2068

    CAS  Google Scholar 

  • Morize C, Moisy F, Rabaud M (2005) Decaying grid-generated turbulence in a rotating tank. Phys Fluids 17:095105

    Google Scholar 

  • Moses EI, Boyd RN, Remington BA, Keane CJ, Al-Ayat R (2009) The National Ignition Facility: ushering in a new age for high energy density science. Phys Plasmas 16(4):041006

    Google Scholar 

  • Nigro G, Malara F, Carbone V, Veltri P (2004) Nanoflares and MHD turbulence in coronal loops: a hybrid shell model. Phys Rev Lett 92(19):194501

    Google Scholar 

  • Nigro G, Pongkitiwanichakul P, Cattaneo F, Tobias SM (2017) What is a large-scale dynamo? Monthly Notes R Astron Soc Lett 464(1):L119–L123

    Google Scholar 

  • Nuckolls J, Wood L, Thiessen A, Zimmerman G (1972) Laser compression of matter to super-high densities: thermonuclear (CTR) applications. Nature 239:139

    CAS  Google Scholar 

  • Pacciani L et al (2010) The 2009 December Gamma-ray Flare of 3C 454.3: the Multifrequency Campaign. ApJ Lett 716:L170–L175

    Google Scholar 

  • Parashar TN, Matthaeus WH, Shay MA, Wan M (2015) Transition from kinetic to MHD behaviour in a collisionless plasma. Astrophys J 811(2):112

    Google Scholar 

  • Parashar TN, Cuesta M, Matthaeus WH (2019) Reynolds number and intermittency in the expanding solar wind: predictions based on voyager observations. Astrophys J Lett 884(2):L57

    CAS  Google Scholar 

  • Parker EN (1972) Topological dissipation and the small-scale fields in turbulent gases. Astrophys J 174:499

    Google Scholar 

  • Parker EN (1983) Direct coronal heating from dissipation of magnetic field. In JPL Solar Wind Five: 23-32

  • Parker EN (1988) Nanoflares and the solar X-ray corona. Astrophys J 330:474

    Google Scholar 

  • Pegoraro F (2019) Plasmas in extreme electromagnetic fields. Rend Fis Acc Lincei 30:11

    Google Scholar 

  • Pegoraro F, Bulanov SV (2020) Nonlinear electrodynamics at cylindrical “cumulation” fronts. Rend. Fis. Acc. Lincei, XX

  • Phan TD, Eastwood JP et al (2018) Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath. Nature 557:202–206

    CAS  Google Scholar 

  • Politano H, Pouquet A (1998) Von Kármán-Howarth equation for magnetohydrodynamics and its consequences on third-order longitudinal structure and correlation functions. Phys Rev E 57(1):R21–R24

    CAS  Google Scholar 

  • Pongkitiwanichakul P, Nigro G, Cattaneo F, Tobias SM (2016) Shear-driven dynamo waves in the fully nonlinear regime. Astrophys J 825(1):23

    Google Scholar 

  • Pouquet A, Rosenberg D, Marino R, Herbert C (2018) Scaling laws for mixing and dissipation in unforced rotating stratified turbulence. J Fluid Mech 844:519–545

    CAS  Google Scholar 

  • Pouquet A, Rosenberg D, Stawarz JE, Marino R (2019) Helicity dynamics, inverse, and bidirectional cascades in fluid and magnetohydrodynamic turbulence: a brief review. Earth Space Sci 6:351–369

    Google Scholar 

  • Pouquet A, Stawarz JE, Rosenberg D (2020) Coupling Large Eddies and Waves in Turbulence: Case Study of Magnetic Helicity at the Ion Inertial Scale. Atmosphere 11:203

    Google Scholar 

  • Pouquet A, Rosenberg D, Stawarz JE (2020) Interplay between turbulence and waves: large-scale helical transfer, and small-scale dissipation and mixing in fluid and Hall-MHD turbulence. Scienze Fisiche e Naturali, Rendiconti Lincei. https://doi.org/10.1007/s12210-020-00951-5

  • Pyakurel PS et al (2019) Transition from ion-coupled to electron-only reconnection: basic physics and implications for plasma turbulence. Phys Plasmas 26:082307

    Google Scholar 

  • Ramaprabhu P, Karkhanis V, Lawrie AGW (2013) The Rayleigh–Taylor instability driven by an accel-decel-accel profile. Phys Fluids 25:115104

    Google Scholar 

  • Ramaprabhu P, Karkhanis V, Banerjee R, Varshochi H, Khan M, Lawrie AGW (2016) Evolution of the single-mode Rayleigh–Taylor instability under the influence of time-dependent accelerations. Phys Rev E 93:013118

    CAS  Google Scholar 

  • Rappazzo AF, Velli M, Einaudi G, Dahlburg RB (2007) Coronal Heating, Weak MHD Turbulence, and Scaling Laws. Astrophys J 657(1):L47–L51

    Google Scholar 

  • Rappazzo AF, Velli M, Einaudi G, Dahlburg RB (2008) Nonlinear dynamics of the parker scenario for coronal heating. Astrophys J 677(2):1348–1366

    CAS  Google Scholar 

  • Rappazzo AF, Velli M, Einaudi G (2010) Shear photospheric forcing and the origin of turbulence in coronal loops. Astrophys J 722(1):65–78

    Google Scholar 

  • Rappazzo AF, Parker EN (2013) Current sheets formation in tangled coronal magnetic fields. Astrophys J Lett 773(1):L2

    Google Scholar 

  • Rayleigh L (1883) Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc Lond Math Soc 14:170–177

    Google Scholar 

  • Réville V, Velli M, Rouillard AP, Lavraud B, Tenerani A, Shi C, Strugarek A (2020) Tearing Instability and Periodic Density Perturbations in the Slow Solar Wind. The Astrophysical Journal Letters 895(1):L20

    Google Scholar 

  • Réville V et al (2020) The role of Alfvén wave dynamics on the large-scale properties of the solar wind: comparing an mhd simulation with parker solar probe E1 data. Astrophys J Suppl Ser 246(2):24

    Google Scholar 

  • Roberts DA, Goldstein ML, Klein LW, Matthaeus WH (1987) Origin and evolution of fluctuations in the solar wind - HELIOS observations and Helios-Voyager comparisons. J Geophys Res 92:12023

    Google Scholar 

  • Rorai C, Mininni PD, Pouquet A (2014) Turbulence comes in bursts in stably stratified flows. Phys Rev E 89(4):043002

    CAS  Google Scholar 

  • Rossi P, Bodo G, Massaglia S, Capetti A (2020) The different flavors of extragalactic jets: the role of relativistic flow deceleration. arXiv:200711423R

  • Ruiz ME, Dasso S, Matthaeus WH, Weygand JM (2014) Characterization of the Turbulent Magnetic Integral Length in the Solar Wind: From 0.3 to 5 Astronomical Units. Sol Phys 289:3917–3933

    Google Scholar 

  • Sahraoui F, Goldstein ML, Belmont G, Canu P, Rezeau L (2010) Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys Rev Lett 105(13):131101

    CAS  Google Scholar 

  • Salem CS, Howes GG, Sundkvist D, Bale SD, Chaston CC, Chen CHK, Mozer FS (2012) Identification of kinetic Alfvén wave turbulence in the solar wind. Astrophys J Lett 745(1):L9

    Google Scholar 

  • Saur J, Bieber J (1999) Geometry of low-frequency solar wind magnetic turbulence: evidence for radially aligned Alfénic fluctuations. J Geophys Res 104(A5):9975–9988

    Google Scholar 

  • Spada E, Carbone V, Cavazzana R, Fattorini L, Regnoli G, Vianello N, Antoni V, Martines E, Serianni G, Spolaore M, Tramontin L (2001) Search of self-organized criticality processes in magnetically confined plasmas: hints from the reversed field pinch configuration. Phys Rev Lett 86:3032

    CAS  Google Scholar 

  • Spolaore M, Vianello N, Agostini M, Cavazzana R, Martines E, Scarin P, Serianni G, Spada E, Zuin M, Antoni V (2009) Direct measurement of current filament structures in a magnetic-confinement fusion device. Phys Rev Lett 102:165001

    CAS  Google Scholar 

  • Scott R, Wang F (2005) Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry. J Phys Oceanogr 35:1650

    Google Scholar 

  • Sonnendrücker E, Roche J, Bertrand P, Ghizzo A (1999) The semi-Lagrangian method for the numerical resolution of the Vlasov equation. J Comput Phys 149(2):201–220

    Google Scholar 

  • Strickland D, Morou G (1985) Compression of amplified chirped optical pulses. Opt Commun 56(3):219

    Google Scholar 

  • Sturrock PA, Uchida Y (1981) Coronal heating by stochastic magnetic pumping. Astrophys J 246(1):331–336

    Google Scholar 

  • Tavani M et al (2011) Discovery of powerful gamma-ray flares from the crab nebula. Science 331:736

    CAS  Google Scholar 

  • Taylor GI (1935) Statistical theory of turbulence. Proc R Soc A 151(873):421

    Google Scholar 

  • Taylor GI (1950) The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc R Soc Lond A201:192–196

    Google Scholar 

  • TenBarge JM, Howes GG, Dorland W (2013) Collisionless damping at electron scales in solar wind turbulence. Astrophys J 774(2):139

    Google Scholar 

  • Terzani D, Londrillo P (2019) A fast and accurate numerical implementation of the envelope model for laser-plasma dynamics. Comput Phys Commun 242:49–59

    CAS  Google Scholar 

  • Totten TL, Freeman JW, Arya S (1996) An empirical determination of the polytropic index for the free- streaming solar wind using Helios 1 data. J Geophys Res 101(A7):15629–15636

    Google Scholar 

  • Tomei N, Del Zanna L, Bugli M, Bucciantini N (2020) General relativistic magnetohydrodynamic dynamo in thick accretion discs: fully non-linear simulations. Mon Not R Astron Soc 49(1):2346

    Google Scholar 

  • Torniamenti S, Bertin G, Bianchini P (2019) A simple two-component description of energy equipartition and mass segregation for anisotropic globular clusters. Astron Astrophys 632:A67.1–A67.17

    Google Scholar 

  • Vaidya B, Mignone A, Bodo G, Rossi P, Massaglia S (2018) A particle module for the PLUTO Code. II. Hybrid framework for modelling nonthermal emission from relativistic magnetized flows. Astrophys J 865:144

    Google Scholar 

  • Van Atta CW, Antonia RA (1980) Reynolds number dependence of skewness and flatness factors of turbulent velocity derivatives. Phys Fluids 23:252

    Google Scholar 

  • van Ballegooijen AA (1986) Cascade of magnetic energy as a mechanism of coronal heating. Astrophys J 311:1001

    Google Scholar 

  • van der Marel RP, Fardal MA, Sohn ST, Patel E, Besla G, Del Pino A, Sahlmann J, Watkins LL (2019) First gaia dynamics of the andromeda system: DR2 proper motions, orbits, and rotation of M31 and M33. Astrophys J 872(1):24

    Google Scholar 

  • Varri AL, Bertin G (2009) Properties of quasi-relaxed stellar systems in an external tidal field. Astrophys J 703:1911–1922

    Google Scholar 

  • Varri AL, Bertin G (2012) Self-consistent models of quasi-relaxed rotating stellar systems. Astron Astrophys 540:A94.1–A94.24

    Google Scholar 

  • Vasquez BJ, Smith CW, Hamilton K, MacBride BT, Leamon RJ (2007) Evaluation of the turbulent energy cascade rates from the upper inertial range in the solar wind at 1 AU. J Geophys Res 112(A7):101

    Google Scholar 

  • Veranda M, Bonfiglio D, Cappello S, Escande DF, Auriemma F, Borgogno D, Chacń L, Fassina A, Franz P, Gobbin M, Grasso D, Puiatti ME (2017) Magnetohydrodynamics modelling successfully predicts new helical states in reversed-field pinch fusion plasmas. Nucl Fusion 57:116029

    Google Scholar 

  • Verdini A, Grappin R (2016) Beyond the maltese cross: geometry of turbulence between 0.2 and 1 au. Astrophys J 831(2):179

    Google Scholar 

  • Wan M, Matthaeus WH, Karimabadi H, Roytershteyn V, Shay M, Wu P, Daughton W, Loring B, Chapman SC (2012) Intermittent dissipation at kinetic scales in collisionless plasma turbulence. Phys Rev Lett 109:195001

    CAS  Google Scholar 

  • Weber EJ, Davis Jr L (1967) The angular momentum of the solar wind. Astrophys J 148:217

    Google Scholar 

  • Weber EJ, Davis Jr L (1970) The effect of viscosity and anisotropy in the pressure on the azimuthal motion of the solar wind. J Geophys Res 75(13):2419

    Google Scholar 

  • Weber EJ (1970) The Torque on the interplanetary plasma due to its anisotropy. Sol Phys 13(1):240

    Google Scholar 

  • Woltjer L (1958) A theorem on force-free magnetic fields. Proc Natl Acad Sci USA 44(6):489–491

    CAS  Google Scholar 

  • Wu P, Wan M, Matthaeus WH, Shay MA, Swisdak M (2013) von Kármán Energy decay and heating of protons and electrons in a kinetic turbulent plasma. Phys Rev Lett 111:121105

    CAS  Google Scholar 

  • Yang XIA, Mittal R (2014) Acceleration of the Jacobi iterative method by factors exceeding 100 using scheduled relaxation. J Comput Phys 274:695–708

    Google Scholar 

  • Zylstra A et al (2017) Proton spectra from \({}^{3}\text{ He }+\text{ T }\) and \({}^3\text{ He }+{}^3\text{ He }\) fusion at low center-of-mass energy, with potential implications for solar fusion cross sections. Phys Rev Lett 119(22):222701

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge all the speakers for having verified the coherence of the article text with their oral contributions and Dr. Fedele Stabile for the technical support and assistance he provided during the conference.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Pegoraro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is a peer-reviewed version of a contribution at the International Conference ’Plasma Physics and Astrophysics up to 2020 and beyond’ organized by the Department of Physics of Universita della Calabria in honor of Pierluigi Veltri’s 70th birthday and held October 7–8, 2019 at Universita della Calabria, Rende (Italy).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigro, G., Pegoraro, F. & Valentini, F. Plasma physics and astrophysics: retrospects, state-of-the art, and prospects. Rend. Fis. Acc. Lincei 32, 25–44 (2021). https://doi.org/10.1007/s12210-020-00965-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-020-00965-z

Keywords

Navigation