Skip to main content
Log in

String stability and flow stability for nonlinear vehicular platoons with actuator faults based on an improved quadratic spacing policy

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the string stability and traffic flow stability based on an improved quadratic spacing policy for heterogeneous vehicular platoons with actuator faults. Due to the occurrence of actuator faults, the maximum acceleration changes, which may invalid the traditional quadratic spacing policy. To tackle the dilemma, an improved quadratic spacing policy with the lower bound of fault factor is proposed. Furthermore, the improved quadratic spacing policy removes the assumption of zero initial spacing errors. Then, by employing the adaptive fuzzy logic system technique and the PID-type sliding mode control method, an adaptive fuzzy fault-tolerant controller is designed to guarantee individual vehicle stability and string stability after reaching the sliding surface. In addition, traffic flow stability is also ensured thanks to the improved quadratic spacing policy. Finally, simulation results have demonstrated the reliability and effectiveness of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ploeg, J., van de Wouw, N., Nijmeijer, H.: Lp string stability of cascaded systems: application to vehicle platooning. IEEE Trans. Control Syst. Technol. 22(2), 1527–1537 (2014)

    Article  Google Scholar 

  2. Guo, G., Wen, S.: Communication scheduling and control of a platoon of vehicles in VANETs. IEEE Trans. Intell. Transp. Syst. 17(6), 1551–1563 (2016)

    Article  Google Scholar 

  3. Zheng, Y., Li, S.E., Li, K., Wang, L.Y.: Stability margin improvement of vehicular platoon considering undirected topology and asymmetric control. IEEE Trans. Control Syst. Technol. 24(4), 1253–1265 (2016)

    Article  Google Scholar 

  4. Gao, F., Hu, X., Li, S.E., Li, K., Sun, Q.: Distributed adaptive sliding mode control of vehicular platoon with uncertain interaction topology. IEEE Trans. Ind. Electron. 65(8), 6352–6361 (2018)

    Article  Google Scholar 

  5. Verginis, C.K., Bechlioulis, C.P., Dimarogonas, D.V., Kyriakopoulos, K.J.: Robust distributed control protocols for large vehicular platoons with prescribed transient and steady-state performance. IEEE Trans. Control Syst. Technol. 26(1), 299–304 (2018)

    Article  Google Scholar 

  6. Wen, S., Guo, G.: Sampled-data control for connected vehicles with Markovian switching topologies and communication delay. IEEE Trans. Intell. Transp. Syst. 21(7), 2930–2942 (2020)

    Article  Google Scholar 

  7. Stankovic, S.S., Stanojevic, M.J., Siljak, D.D.: Decentralized overlapping control of a platoon of vehicles. IEEE Trans. Control Syst. Technol. 8(5), 816–832 (2000)

    Article  Google Scholar 

  8. Guo, X.G., Wang, J.L., Liao, F., Teo, R.S.H.: CNN-based distributed adaptive control for vehicle-following platoon with input saturation. IEEE Trans. Intell. Transp. Syst. 19(10), 3121–3132 (2018)

    Article  Google Scholar 

  9. Guo, X., Wang, J., Liao, F., Teo, R.S.H.: Neuroadaptive quantized PID sliding-mode control for heterogeneous vehicular platoon with unknown actuator deadzone. Int. J. Robust Nonlin. Control. 29(1), 188–208 (2019)

    Article  MathSciNet  Google Scholar 

  10. Swaroop, D., Hedrick, J.K., Choi, S.B.: Direct adaptive longitudinal control of vehicle platoons. IEEE Trans. Vehicular Technol. 50(1), 150–161 (2001)

    Article  Google Scholar 

  11. Ali, A., Garcia, G., Martinet, P.: The flatbed platoon towing model for safe and dense platooning on highways. IEEE Intell. Transp. Syst. Mag. 7(1), 58–68 (2015)

    Article  Google Scholar 

  12. Ghasemi, A., Kazemi, R., Azadi, S.: Stable decentralized control of platoon of vehicles with heterogeneous information feedback. IEEE Trans. Veh. Technol. 62(9), 4299–4308 (2013)

    Article  Google Scholar 

  13. Swaroop, D.: String stability of interconnected systems: An application to platooning in automated highway systems. Ph.D. thesis, University of California at Berkeley (1994)

  14. Kwon, J.W., Chwa, D.: Adaptive bidirectional platoon control using a coupled sliding mode control method. IEEE Trans. Intell. Transp. Syst. 15(5), 2040–2048 (2014)

    Article  Google Scholar 

  15. Middleton, R.H., Braslavsky, J.H.: String instability in classes of linear time invariant formation control with limited communication range. IEEE Trans. Autom. Control. 55(7), 1519–1530 (2010)

    Article  MathSciNet  Google Scholar 

  16. Xiao, L., Gao, F.: Practical string stability of platoon of adaptive cruise control vehicles. IEEE Trans. Intell. Transp. 12(4), 1184–1194 (2011)

    Article  Google Scholar 

  17. Guo, G., Yue, W.: Autonomous platoon control allowing range-limited sensors. IEEE Trans. Veh. Technol. 61(7), 2901–2912 (2012)

    Article  Google Scholar 

  18. Besselink, B., Johansson, K.H.: String stability and a delay-based spacing policy for vehicle platoons subject to disturbances. IEEE Trans. Autom. Control. 62(9), 4376–4391 (2017)

    Article  MathSciNet  Google Scholar 

  19. Xu, S.S.D., Chen, C.C., Wu, Z.L.: Study of nonsingular fast terminal sliding-mode fault-tolerant control. IEEE Trans. Ind. Electron. 62(6), 3906–3913 (2015)

    Google Scholar 

  20. Hao, L.Y., Yang, G.H.: Fault tolerant control for a class of uncertain chaotic systems with actuator saturation. Nonlinear Dyn. 73(4), 2133–2147 (2013)

    Article  MathSciNet  Google Scholar 

  21. Guo, X.G., Wang, J.L., Liao, F.: Adaptive fuzzy fault-tolerant control for multiple high-speed trains with proportional and integral-based sliding mode. IET Control Theory Appl. 11(8), 1234–1244 (2017)

    Article  MathSciNet  Google Scholar 

  22. Li, P.Y., Shrivastava, A.: Traffic flow stability induced by constant time headway policy for adaptive cruise control vehicles. Transp. Res. C Emerg. Technol. 10(4), 275–301 (2002)

    Article  Google Scholar 

  23. Santhanakrishnan, K., Rajamani, R.: On spacing policies for highway vehicle automation. IEEE Trans. Intell. Transp. Syst. 4(4), 198–204 (2003)

    Article  Google Scholar 

  24. Swaroop, D., Rajagopal, K.R.: Intelligent cruise control systems and traffic flow stability. Transp. Res. Part C 7(6), 329–352 (1999)

    Article  Google Scholar 

  25. Baskar, L.D., Schutter, B.D., Hellendoorn, H.: Traffic management for automated highway systems using model-based predictive control. IEEE Trans. Intell. Transp. Syst. 13(2), 838–847 (2012)

    Article  Google Scholar 

  26. Zhou, J., Peng, H.: Range policy of adaptive cruise control vehicle for improved flow stability and string stability. IEEE Trans. Intell. Transp. Syst. 6(2), 229–237 (2005)

    Article  Google Scholar 

  27. Zhao, J., Oya, M., Kamel, A.E.: A safety spacing policy and its impact on highway traffic flow. In Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 960-965 (2009)

  28. Sungu, H.E., Inoue, M., Imura, J.i.: Nonlinear spacing policy based vehicle platoon control for local string stability and global traffic flow stability. In Proceedings of European Control Conference, pp. 3396-3401 (2015)

  29. Tong, S.C., Li, C.Y., Li, Y.M.: Fuzzy adaptive observer backstepping control for MIMO nonlinear systems. Fuzzy Sets Syst. 160(19), 2755–2775 (2009)

    Article  MathSciNet  Google Scholar 

  30. Deng, H., Krstic, M.: Stochastic nonlinear stabilization-I: A backstepping design. Syst. Control Lett. 32(3), 143–150 (1997)

    Article  MathSciNet  Google Scholar 

  31. Yu, J.P., Shi, P., Zhao, L.: Finite-Time command filtered backstepping control for a class of nonlinear systems. Automatica 92, 173–180 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61503055, 61573077, U1808205, 61602077), Dalian Innovative support scheme for high-level talents (2017RQ072) and Liaoning Natural Science Foundation Project (2019-KF-03-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, LY., Li, P. & Guo, G. String stability and flow stability for nonlinear vehicular platoons with actuator faults based on an improved quadratic spacing policy. Nonlinear Dyn 102, 2725–2738 (2020). https://doi.org/10.1007/s11071-020-06094-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06094-4

Keywords

Navigation