Skip to main content
Log in

Muscle differentiation induced by p53 signaling pathway-related genes in myostatin-knockout quail myoblasts

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The myostatin (MSTN) gene is of interest in the livestock industry because mutations in this gene are closely related to growth performance and muscle differentiation. Thus, in this study, we established MSTN knockout (KO) quail myoblasts (QM7) and investigated the regulatory pathway of the myogenic differentiation process. We used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 to generate MSTN KO QM7 cells and subsequently isolated a single cell-derived MSTN KO QM7 subline with 10- and 16-nucleotide deletions that induced translational frameshift mutations. The differentiation capacity and proliferation rate of MSTN KO QM7 cells were enhanced. We conducted next-generation-sequencing (NGS) analysis to compare the global gene expression profiles of wild-type (WT) QM7 and MSTN KO QM7 cells. Intriguingly, NGS expression profiles showed different expression patterns of p21 and p53 in MSTN KO QM7 cells. Moreover, we identified downregulated expression patterns of leukemia inhibitory factor and DNA Damage Inducible Transcript 4, which are genes in the p53 signaling pathway. Using quantitative RT-PCR (qRT-PCR) analysis and western blotting, we concluded that p53-related genes promote the cell cycle by upregulating p21 and enhancing muscle differentiation in MSTN KO QM7 cells. These results could be applied to improve economic traits in commercial poultry by regulating MSTN-related networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author and openly available in NABIC (National Agricultural Biotechnology Information Center, https://nabic.rda.go.kr:2360/).

References

  1. Dransfield E, Sosnicki AA (1999) Relationship between muscle growth and poultry meat quality. Poult Sci 78:743–746. https://doi.org/10.1093/ps/78.5.743

    Article  CAS  PubMed  Google Scholar 

  2. Feng Y, Niu LL, Wei W, Zhang WY, Li XY, Cao JH, Zhao SH (2013) A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation. Cell Death Dis 4:e934. https://doi.org/10.1038/cddis.2013.462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Park JW, Lee JH, Kim SW, Han JS, Kang KS, Kim SJ, Park TS (2018) Muscle differentiation induced up-regulation of calcium-related gene expression in quail myoblasts. Asian-Australas J Anim Sci 31:1507–1515. https://doi.org/10.5713/ajas.18.0302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee JH, Park JW, Kang KS, Park TS (2019) Forkhead box O3 promotes cell proliferation and inhibits myotube differentiation in chicken myoblast cells. Br Poult Sci 60:23–30. https://doi.org/10.1080/00071668.2018.1547362

    Article  CAS  PubMed  Google Scholar 

  5. Kim SW, Lee JH, Park BC, Park TS (2017) Myotube differentiation in clustered regularly interspaced short palindromic repeat/Cas9-mediated MyoD knockout quail myoblast cells. Asian-Australas J Anim Sci 30:1029–1036. https://doi.org/10.5713/ajas.16.0749

    Article  CAS  PubMed  Google Scholar 

  6. McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90. https://doi.org/10.1038/387083a0

    Article  CAS  PubMed  Google Scholar 

  7. Lee JH, Kim SW, Park TS (2017) Myostatin gene knockout mediated by Cas9-D10A nickase in chicken DF1 cells without off-target effect. Asian-Australas J Anim Sci 30:743–748. https://doi.org/10.5713/ajas.16.0695

    Article  CAS  PubMed  Google Scholar 

  8. Luo J, Song Z, Yu S, Cui D, Wang B, Ding F, Li S, Dai Y, Li N (2014) Efficient generation of Myosrarin (MSTN) biallelic mutations in cattle using Zinc finger nuclease. PLoS ONE 9(4):e95225. https://doi.org/10.1371/journal.pone.0095225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang X, Niu Y, Zhou J, Yu H, Kou Q, Lei A, Zhao X, Yan H, Cai B, Shen Q, Zhou S, Zhu H, Zhou G, Niu W, Hua J, Jiang Y, Huang X, Ma B, Chen Y (2016) Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep. Sci Rep 6(1):32271. https://doi.org/10.1038/srep32271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cadieu E, Neff MW, Quignon P, Walsh K, Chase K, Parker HG, VonHoldt BM, Rhue A, Boyko A, Byers A, Wong A, Mosher DS, Elkahloun AG, Spady TC, André C, Lark KG, Cargill M, Bustamante CD, Wayne RK, Ostrander EA (2009) Coat variation in the domestic dog is governed by variants in three genes. Science 326(5949):150–153. https://doi.org/10.1126/science.1177808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tripathi AK, Aparnathi MK, Vyavahare SS, Ramani UV, Rank DN, Joshi CG (2012) Myostatin gene silencing by RNA interference in chicken embryo fibroblast cells. J Biotechnol 160:140–145. https://doi.org/10.1016/j.jbiotec.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  12. Tripathi AK, Aparnathi MK, Patel AK, Joshi CG (2013) In vitro silencing of myostatin gene by shRNAs in chicken embryonic myoblast cells. Biotechnol Prog 29:425–431. https://doi.org/10.1002/btpr.1681

    Article  CAS  PubMed  Google Scholar 

  13. Bhattacharya TK, Shukla R, Chatterjee RN, Bhanja SK (2019) Comparative analysis of silencing expression of myostatin (MSTN) and its two receptor (ACVR2A and ACVR2B) genes affecting growth traits in knock down chicken. Sci Rep 9(1):7789. https://doi.org/10.1038/s41598-019-44217-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim GD, Lee JH, Song S, Kim SW, Han JS, Shin SP, Park BC, Park TS (2020) Generation of myostatin-knockout chickens mediated by D10A-Cas9 nickase. FASEB J 34:5688–5696. https://doi.org/10.1096/fj.201903035R

    Article  CAS  PubMed  Google Scholar 

  15. Lee J, Kim D, Lee K (2020) Muscle hyperplasia in Japanese quail by single amino acid deletion in MSTN propeptide. Int J Mol Sci 21(4):1504. https://doi.org/10.3390/ijms21041504

    Article  CAS  PubMed Central  Google Scholar 

  16. Park TS, Park J, Lee JH, Park JW, Park BC (2019) Disruption of G(0)/G(1) switch gene 2 (G0S2) reduced abdominal fat deposition and altered fatty acid composition in chicken. FASEB J 33:1188–1198. https://doi.org/10.1096/fj.201800784R

    Article  CAS  PubMed  Google Scholar 

  17. Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F, dos Santos-Neto PC, Nguyen TH, Crénéguy A, Brusselle L, Anegón I, Menchaca A (2015) Efficient generation of myostatin knock-out sheep Using CRISPR/Cas9 technology and microinjection into zygotes. PLoS ONE 10:e0136690. https://doi.org/10.1371/journal.pone.0136690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garikipati DK, Rodgers BD (2012) Myostatin inhibits myosatellite cell proliferation and consequently activates differentiation: evidence for endocrine-regulated transcript processing. J Endocrinol 215:177–187. https://doi.org/10.1530/joe-12-0260

    Article  CAS  PubMed  Google Scholar 

  19. He G, Siddik ZH, Huang Z, Wang R, Koomen J, Kobayashi R, Khokhar AR, Kuang J (2005) Induction of p21 by p53 following DNA damage inhibits both Cdk4 and Cdk2 activities. Oncogene 24:2929–2943. https://doi.org/10.1038/sj.onc.1208474

    Article  CAS  PubMed  Google Scholar 

  20. Salabi F, Nazari M, Chen Q, Nimal J, Tong J, Cao WG (2014) Myostatin knockout using zinc-finger nucleases promotes proliferation of ovine primary satellite cells in vitro. J Biotechnol 192:268–280. https://doi.org/10.1016/j.jbiotec.2014.10.038

    Article  CAS  PubMed  Google Scholar 

  21. Kang JD, Kim S, Zhu HY, Jin L, Guo Q, Li XC, Zhang YC, Xing XX, Xuan MF, Zhang GL, Luo QR, Kim Y, Cui CD, Li W-X, Cui ZY, Kim JS, Yin XJ (2017) Generation of cloned adult muscular pigs with myostatin gene mutation by genetic engineering. RSC Adv 7:12541–12549. https://doi.org/10.1039/C6RA28579A

    Article  CAS  Google Scholar 

  22. Guo R, Wan Y, Xu D, Cui L, Deng M, Zhang G, Jia R, Zhou W, Wang Z, Deng K, Huang M, Wang F, Zhang Y (2016) Generation and evaluation of myostatin knock-out rabbits and goats using CRISPR/Cas9 system. Sci Rep 6(1):29855. https://doi.org/10.1038/srep29855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seiliez I, Sabin N, Gabillard JC (2012) Myostatin inhibits proliferation but not differentiation of trout myoblasts. Mol Cell Endocrinol 351:220–226. https://doi.org/10.1016/j.mce.2011.12.011

    Article  CAS  PubMed  Google Scholar 

  24. Waldman T, Kinzler KW, Vogelstein B (1995) p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 55:5187–5190

    CAS  PubMed  Google Scholar 

  25. Parker SB, Eichele G, Zhang P, Rawls A, Sands AT, Bradley A, Olson EN, Harper JW, Elledge SJ (1995) p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 267:1024–1027. https://doi.org/10.1126/science.7863329

    Article  CAS  PubMed  Google Scholar 

  26. Zhang P, Wong C, Liu D, Finegold M, Harper JW, Elledge SJ (1999) p21(CIP1) and p57(KIP2) control muscle differentiation at the myogenin step. Genes Dev 13:213–224. https://doi.org/10.1101/gad.13.2.213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang ZJ, Broz DK, Noderer WL, Ferreira JP, Overton KW, Spencer SL, Meyer T, Tapscott SJ, Attardi LD, Wang CL (2015) p53 suppresses muscle differentiation at the myogenin step in response to genotoxic stress. Cell Death Differ 22:560–573. https://doi.org/10.1038/cdd.2014.189

    Article  CAS  PubMed  Google Scholar 

  28. McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162:1135–1147. https://doi.org/10.1083/jcb.200207056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manceau M, Gros J, Savage K, Thomé V, McPherron A, Paterson B, Marcelle C (2008) Myostatin promotes the terminal differentiation of embryonic muscle progenitors. Genes Dev 22:668–681. https://doi.org/10.1101/gad.454408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R (2002) Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277:49831–49840. https://doi.org/10.1074/jbc.M204291200

    Article  CAS  PubMed  Google Scholar 

  31. Kojima K, Kanzaki H, Iwai M, Hatayama H, Fujimoto M, Inoue T, Horie K, Nakayama H, Fujita J, Mori T (1994) Expression of leukemia inhibitory factor in human endometrium and placenta. Biol Reprod 50:882–887. https://doi.org/10.1095/biolreprod50.4.882

    Article  CAS  PubMed  Google Scholar 

  32. Hsieh YC, Intawicha P, Lee KH, Chiu YT, Lo NW, Ju JC (2011) LIF and FGF cooperatively support stemness of rabbit embryonic stem cells derived from parthenogenetically activated embryos. Cell Reprogram 13:241–255. https://doi.org/10.1089/cell.2010.0097

    Article  CAS  PubMed  Google Scholar 

  33. Jo C, Kim H, Jo I, Choi I, Jung SC, Kim J, Kim SS, Jo SA (2005) Leukemia inhibitory factor blocks early differentiation of skeletal muscle cells by activating ERK. Biochim Biophys Acta 1743:187–197. https://doi.org/10.1016/j.bbamcr.2004.11.002

    Article  CAS  PubMed  Google Scholar 

  34. Chen Q, Zhou Y, Richards AM, Wang P (2016) Up-regulation of miRNA-221 inhibits hypoxia/reoxygenation-induced autophagy through the DDIT4/mTORC1 and Tp53inp1/p62 pathways. Biochem Biophys Res Commun 474:168–174. https://doi.org/10.1016/j.bbrc.2016.04.090

    Article  CAS  PubMed  Google Scholar 

  35. Chen R, Wang B, Chen L, Cai D, Li B, Chen C, Huang E, Liu C, Lin Z, Xie WB, Wang H (2016) DNA damage-inducible transcript 4 (DDIT4) mediates methamphetamine-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes. Toxicol Appl Pharmacol 295:1–11. https://doi.org/10.1016/j.taap.2016.01.017

    Article  CAS  PubMed  Google Scholar 

  36. Liu C, Xue R, Wu D, Wu L, Chen C, Tan W, Chen Y, Dong Y (2014) REDD1 attenuates cardiac hypertrophy via enhancing autophagy. Biochem Biophys Res Commun 454:215–220. https://doi.org/10.1016/j.bbrc.2014.10.079

    Article  CAS  PubMed  Google Scholar 

  37. Hulmi JJ, Silvennoinen M, Lehti M, Kivelä R, Kainulainen H (2012) Altered REDD1, myostatin, and Akt/mTOR/FoxO/MAPK signaling in streptozotocin-induced diabetic muscle atrophy. Am J Physiol Endocrinol Metab 302:E307-315. https://doi.org/10.1152/ajpendo.00398.2011

    Article  CAS  PubMed  Google Scholar 

  38. Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K, Oliner JD, McKeon F, Haber DA (2002) REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell 10:995–1005. https://doi.org/10.1016/s1097-2765(02)00706-2

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was also supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agri-Bio Industry Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (Grant No. 316005–5).

Author information

Authors and Affiliations

Authors

Contributions

PJW participated in the design of the study and carried out the experiments. JHL carried out the experiments and wrote the first draft of the manuscript. JSH and SPS carried out and analyzed the experiments. TSP participated in writing the final version of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Tae Sub Park.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JW., Lee, J.H., Han, J.S. et al. Muscle differentiation induced by p53 signaling pathway-related genes in myostatin-knockout quail myoblasts. Mol Biol Rep 47, 9531–9540 (2020). https://doi.org/10.1007/s11033-020-05935-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05935-0

Keywords

Navigation