Skip to main content
Log in

On the Schrödinger–Lohe Hierarchy for Aggregation and Its Emergent Dynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Lohe hierarchy is a hierarchy of finite-dimensional aggregation models consisting of the Kuramoto model, the complex Lohe sphere model, the Lohe matrix model and the Lohe tensor model. In contrast, the Schrödinger–Lohe model is the only known infinite-dimensional Lohe aggregation model in literature. In this paper, we provide an explicit connection between the Schrödinger–Lohe model and the complex Lohe sphere model, and then by exploiting this explicit relation, we construct infinite-dimensional liftings of the Lohe matrix and the Lohe tensor models. In this way, we establish the Schrödinger–Lohe hierarchy which corresponds to the infinite-dimensional extensions of the Lohe hierarchy. For the proposed hierarchy, we provide sufficient frameworks leading to the complete aggregation in terms of coupling strengths and initial configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acebron, J.A., Bonilla, L.L., Pérez Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

    ADS  Google Scholar 

  2. Albi, G., Bellomo, N., Fermo, L., Ha, S.-Y., Kim, J., Pareschi, L., Poyato, D., Soler, J.: Vehicular traffic, crowds and swarms: from kinetic theory and multiscale methods to applications and research perspectives. Math. Models Methods Appl. Sci. 29, 1901–2005 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Barbǎlat, I.: Systèmes déquations différentielles d’oscillations non Linéaires. Rev. Math. Pures Appl. 4, 267–270 (1959)

    MathSciNet  MATH  Google Scholar 

  4. Bridgeman, J.C., Chubb, C.T.: Hand-waving and interpretive dance: an Introductory course on tensor networks. J. Phys. A Math. Theor. 50, 223001 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Bronski, J., Carty, T., Simpson, S.: A matrix valued Kuramoto model. J. Stat. Phys. 178, 595–624 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Chi, D., Choi, S.-H., Ha, S.-Y.: Emergent behaviors of a holonomic particle system on a sphere. J. Math. Phys. 55, 052703 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Choi, Y., Ha, S.-Y., Jung, S., Kim, Y.: Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model. Physica D 241, 735–754 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Choi, S.-H., Ha, S.-Y.: Complete entrainment of Lohe oscillators under attractive and repulsive couplings. SIAM. J. App. Dyn. 13, 1417–1441 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Choi, S.-H., Ha, S.-Y.: Quantum synchronization of the Schödinger–Lohe model. J. Phys. A Math. Theor. 47, 355104 (2014)

    MATH  Google Scholar 

  10. Chopra, N., Spong, M.W.: On exponential synchronization of Kuramoto oscillators. IEEE Trans. Autom. Control 54, 353–357 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Degond, P., Frouvelle, A., Merino-Aceituno, S.: A new flocking model through body attitude coordination. Math. Models Methods Appl. Sci. 27, 1005–1049 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Degond, P., Frouvelle, A., Merino-Aceituno, S., Trescases, A.: Quaternions in collective dynamics. Multiscale Model. Simulat. 16, 28–77 (2018)

    MathSciNet  MATH  Google Scholar 

  13. DeVille, L.: Synchronization and stability for quantum Kuramoto. J. Stat. Phys. 174, 160–187 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Dörfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: A survey. Automatica 50, 1539–1564 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Huh, H., Ha, S.-Y.: Dynamical system approach to synchronization of the coupled Schrödinger–Lohe system. Q. Appl. Math. 75, 555–579 (2017)

    MATH  Google Scholar 

  16. Huh, H., Ha, S.-Y., Kim, D.: Emergent behaviors of the Schrödinger–Lohe model on cooperative-competitive networks. J. Differ. Equ. 263, 8295–8321 (2017)

    ADS  MATH  Google Scholar 

  17. Huh, H., Ha, S.-Y., Kim, D.: Asymptotic behavior and stability for the Schrödinger–Lohe model. J. Math. Phys. 59, 102701 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Ha, S.-Y., Park, H.: Complete aggregation of the Lohe tensor model with the same free flow. J. Math. Phys. 61, 102702 (2020)

    ADS  MathSciNet  Google Scholar 

  19. Ha, S.-Y., Park, H.: From the Lohe tensor model to the Lohe Hermitian sphere model and emergent dynamics. SIAM J. Appl. Dyn. Syst. 19(2), 1312–1342 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Ha, S.-Y., Park, H.: Emergent behaviors of Lohe tensor flock. J. Stat. Phys. 178, 1268–1292 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Ha, S.-Y., Park, H.: Emergent behaviors of the generalized Lohe matrix model. To appear in Discrete and Continuous Dynamical Systems Series B

  22. Ha, S.-Y., Ryoo, S.W.: On the emergence and orbital Stability of phase-locked states for the Lohe model. J. Stat. Phys 163, 411–439 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Ha, S.-Y., Li, Z., Xue, X.: Formation of phase-locked states in a population of locally interacting Kuramoto oscillators. J. Differ. Equ. 255, 3053–3070 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Ha, S.-Y., Ko, D., Park, J., Zhang, X.: Collective synchronization of classical and quantum oscillators. Math. Sci. 3, 209–267 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Ha, S.-Y., Ko, D., Ryoo, S.W.: On the relaxation dynamics of Lohe oscillators on some Riemannian manifolds. J. Stat. Phys. 172, 1427–1478 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Harris, F.E.: Mathematics for Physical Science and Engineering: Symbolic Computing Applications in Maple and Mathematica. Academic Press, New York (2014)

    MATH  Google Scholar 

  27. Kuramoto, Y.: International symposium on mathematical problems in mathematical physics. Lecture Notes Theor. Phys. 30, 420 (1975)

    ADS  Google Scholar 

  28. Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer, Berlin (1984)

    MATH  Google Scholar 

  29. Lohe, M.A.: Non-abelian Kuramoto model and synchronization. J. Phys. A Math. Theor. 42, 395101 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Lohe, M.A.: Quantum synchronization over quantum networks. J. Phys. A Math. Theor. 43, 465301 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Lohe, M.A.: Systems of matrix Riccati equations, linear fractional transformations, partial integrability and synchronization. J. Math. Phys. 60, 072701 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Markdahl, J., Thunberg, J., Goncalves, J.: Almost global consensus on the n-sphere. IEEE Trans. Autom. Control 63, 1664–1675 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Orús, R.: A practical introduction to tensor networks: matrix product states and projected entangled pair states. Ann. Phys. 349, 117–158 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  35. Shivakumar, P.N., Sivakumar, K.C.: A review of ininite matrices and their applications. Linear Algebra Appl. 430, 976–998 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Thunberg, J., Markdahl, J., Bernard, F., Goncalves, J.: A lifting method for analyzing distributed synchronization on the unit sphere. Autom. J. IFAC 96, 253–258 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Vicsek, T., Zefeiris, A.: Collective motion. Phys. Rep. 517, 71–140 (2012)

    ADS  Google Scholar 

  39. Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967)

    Google Scholar 

  40. Winfree, A.T.: The Geometry of Biological Time. Springer, New York (1980)

    MATH  Google Scholar 

  41. Zeidler, E.: Quantum Field Theory I. Basics in Mathematics and Physics. Springer, New York (2010)

    MATH  Google Scholar 

  42. Zhu, J.: Synchronization of Kuramoto model in a high-dimensional linear space. Phys. Lett. A 377, 2939–2943 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of S.-Y.Ha is supported by NRF-2020R1A2C3A01003881. The work of H. Park is supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2019R1I1A1A01059585)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansol Park.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, SY., Park, H. On the Schrödinger–Lohe Hierarchy for Aggregation and Its Emergent Dynamics. J Stat Phys 181, 2150–2190 (2020). https://doi.org/10.1007/s10955-020-02659-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02659-0

Keywords

Mathematics Subject Classification

Navigation