Skip to main content

Advertisement

Log in

g-C3N4 composited TiO2 nanofibers were prepared by high voltage electrostatic spinning to improve photocatalytic efficiency

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Semiconductor photocatalysis technology is one of the ways to control environmental pollution using solar energy. Because of its chemical stability, low toxicity and high photocatalytic oxidation-reduction ability, titanium dioxide has become one of the most widely studied and applied semiconductor photocatalytic materials. However, there are also some problems such as the response only in the ultraviolet range, rapid recombination of electron pairs produced by light during photodegradation, and the small specific surface area. On account of the limitations of titanium dioxide photocatalyst, the key factors and breakthroughs to improve performance new materials, this paper uses g-C3N4 of improving the photocatalytic function of titanium dioxide. Because g-C3N4 has good conductivity, relatively strong adsorption capacity and larger specific surface area compared with other carriers, g-C3N4 is one of the most promising carriers. In this research work, g-C3N4/TiO2 heterogeneous nanocomposites were prepared by combining TiO2 nanowires with g-C3N4. First of all, we need to change the morphology of titanium dioxide. We use high-voltage electrospinning technology to achieve this goal. This method greatly increases the specific surface area and increases the active sites involved in photocatalytic activity. Then, g-C3N4 was prepared with melamine as raw material by high temperature calcination. Then, the hydrothermal method combined with the good characteristics of g-C3N4 enhanced the deflection of photogenerated electrons and prolongs the lifetime of photogenerated electron-hole pairs. The photocatalytic efficiency of nanocomposites is greatly improved Rhodamine B solution was completely degraded in 120 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.M. Shi, M. Zhou, D.F. Song, X.J. Pan, J.C. Fu, J.Y. Zhou, S.Y. Ma, T. Wang, Ceram. Int. 40, 10383–10393 (2014)

    Article  CAS  Google Scholar 

  2. Y. Choi, H. Kim, G. Moon, S. Jo, W. Choi, ACS Catal. 6, 821–828 (2016)

    Article  CAS  Google Scholar 

  3. B. Pant, P.S. Saud, M. Park, S.J. Park, H.Y. Kim, J. Alloys Compd. 671, 51 (2016)

    Article  CAS  Google Scholar 

  4. G.M. Wang, H.Q. Feng, A. Gao, Q. Hao, W.H. Jin, X. Peng, W. Li, G.S. Wu, P.K. Chu, ACS Appl. Mater. Interfaces 8, 24509–24516 (2016)

    Article  CAS  Google Scholar 

  5. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)

    Article  CAS  Google Scholar 

  6. M.J. Sampaio, C.G. Silva, A.M.T. Silva, L.M.P. Martínez, C. Han, S.M. Torres, J.L. Figueiredo, D.D. Dionysiou, J.L. Fariaa, Appl. Catal. B Environ. 170–171, 74–82 (2015)

    Article  Google Scholar 

  7. G. Zhang, E.M. Wurtzlera, X. He, M.N. Nadagouda, K. O’Sheac, S.M. El-Sheikh, A.A. Ismail, D. Wendell, D.D. Appl. Catal. B Environ. 163, 591–598 (2015)

    Article  CAS  Google Scholar 

  8. O.K. Dalrymple, D.H. Yeh, M.A. Trotz, Removing pharmaceuticals and endocrine-disrupting compounds from wastewater by photocatalysis. J. Chem. Technol. Biotechnol. 82, 121–134 (2007)

    Article  CAS  Google Scholar 

  9. C. Zhao, M. Pelaez, X. Duan, H. Deng, K.E. O’Shea, D.F. Kassinos, D.D. Dionysiou, Appl. Catal. B Environ. 134–135, 83–92 (2013)

    Article  Google Scholar 

  10. S. Sarkar, R. Das, H. Choi, C. Bhattacharjee, RSC Adv. 4, 57250–57266 (2014)

    Article  CAS  Google Scholar 

  11. C. Zhao, L.E. Arroyo-Mora, A.P. DeCaprio, V.K. Sharma, D.D. Dionysiou, K.E. O’Shea, Water Res. 67, 144–153 (2014)

    Article  CAS  Google Scholar 

  12. W.H.M. Abdelraheem, X. He, X. Duan, D.D. Dionysiou, J. Hazard. Mater. 282, 233–240 (2015)

    Article  CAS  Google Scholar 

  13. Y. Liu, X. He, X. Duan, Y. Fu, D.D. Dionysiou, Chem. Eng. J. 276, 113–121 (2015)

    Article  CAS  Google Scholar 

  14. Y. Zheng, J. Liu, J. Liang, M. Jaroniec, S.Z. Qiao, Energy Environ. Sci. 5, 6717–6731 (2012)

    Article  CAS  Google Scholar 

  15. P. Kumar, P. Kar, A.P. Manuel, S. Zeng, U.K. Thakur et al., Adv. Opt. Mater. 8, 1901275 (2020)

    Article  CAS  Google Scholar 

  16. U.K. Pawan-Kumar, K. Thakur, P. Alam, R. Kar, S. Kisslinger, S. Zeng et al., Carbon 137, 174–187 (2018)

    Article  Google Scholar 

  17. D.P.T. Duong, T.D. Van, P.B. Dai, T.N.N. Tran, Mater. Res. Express. 6, 085061 (2019)

    Article  CAS  Google Scholar 

  18. X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8, 76–80 (2009)

    Article  CAS  Google Scholar 

  19. S. Agrawal, W. Lin, O.V. Prezhdo, D.J. Trivedi, J. Chem. Phys. 153, 054701 (2020)

    Article  CAS  Google Scholar 

  20. S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25, 10397 (2009)

    Article  CAS  Google Scholar 

  21. L. Ge, C. Han, J. Liu, Y. Li, Appl. Catal. A Gen. 409, 215 (2011)

    Article  Google Scholar 

  22. J.X. Wei, H.M. Shi, M. Zhou, D.F. Song, Y. Zhang, X.J. Pan, J.Y. Zhou, T. Wang, Appl. Catal. A 499, 101 (2015)

    Article  CAS  Google Scholar 

  23. S. Zhao, S. Chen, H. Yu, X. Quan, Sep. Purif. Technol. 99, 50–54 (2012)

    Article  CAS  Google Scholar 

  24. J.G. Wang, P.H. Rao, W. An, J.L. Xu, Y. Men, Appl. Catal. B 195, 141–148 (2016)

    Article  CAS  Google Scholar 

  25. C. Han, Y. Wang, Y. Lei, B. Wang, N. Wu, Q. Shi, Q. Li, Nano Res. 8, 1199e1209 (2015)

    Google Scholar 

  26. Y. Zhang, J. Liu, G. Wu, W. Chen, Nanoscale 4, 5300 (2012)

    Article  CAS  Google Scholar 

  27. B. Chai, T. Peng, J. Mao, K. Li, L. Zan, Phys. Chem. Chem. Phys. 14, 16745 (2012)

    Article  CAS  Google Scholar 

  28. C. Miranda, H. Mansilla, J. Yánez, G. Colón, J. Photochem. Photobiol. A 253, 16 (2013)

    Article  CAS  Google Scholar 

  29. K. Minsik, S. Hwang, J.-S. Yu, J. Mater. Chem. 17, 1656 (2007)

    Article  Google Scholar 

  30. H. Wang, Y. Liang, L. Liu, J. Hu, W. Cui, J. Hazard. Mater. 344, 369e380 (2018)

    Google Scholar 

  31. C. Liu, F. Wang, J. Zhang, K. Wang, Y. Qiu, Q. Liang, Z. Chen, Nano-Micro Lett. 10(13), 37 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Xu, J., Zhang, Z. et al. g-C3N4 composited TiO2 nanofibers were prepared by high voltage electrostatic spinning to improve photocatalytic efficiency. J Mater Sci: Mater Electron 32, 1178–1186 (2021). https://doi.org/10.1007/s10854-020-04890-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04890-7

Navigation