Skip to main content
Log in

On the electrical and charge conduction properties of thermally evaporated MoOx on n- and p-type crystalline silicon

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the electrical and charge conduction characteristics of a contact structure featuring thermally evaporated MoOx, deposited on n- and p-type crystalline silicon (c-Si), are extensively investigated by room temperature current–voltage (I–V), transmission line measurements (TLM), and temperature-dependent current–voltage measurements (I–V–T). XRD diffraction spectrum shows that the deposited MoOx film exhibits amorphous nature. From TLM measurements, the values of contact resistivity are calculated to be \({\rho_{\rm {c}}}\): 55.9 mΩ-cm2 for Ag/MoOx/n-Si and \({\rho_{\rm {c}}}\): 48.7 mΩ-cm2 for Ag/MoOx/p-Si. The barrier parameters such as barrier height (\({{\phi }_{\mathrm{e}}}\)) and ideality factor (\({n}\)) are investigated by the thermionic emission theory for I–V and I–V–T measurements. The \({{\phi }_{\mathrm{e}}}\), \({n}\), and conventional Richardson plot demonstrate resolute temperature dependency, obeying the barrier height of Gaussian distribution model. The uniform barrier height values are calculated to be \({{\phi }_{\mathrm{b}}}\):1.24 eV for Ag/MoOx/n-Si and \({{\phi }_{\mathrm{b}}}\):0.66 eV for Ag/MoOx/p-Si from the extrapolation of \({{\phi }_{\mathrm{e}}}\) at \({n}\) \({=}\) 1 of the linear fitting of the variation with the experimental barrier height \({{\phi }_{\mathrm{e}}}\) with ideality factor. The activation energy (\({{E}_{\mathrm{a}}}\)) and Richardson constant (A*), obtained from Richardson plot, are much smaller than \({{\phi }_{\mathrm{b}}}\) and the theoretical values of n- and p-type c-Si. The modified Richardson plot yields more reliable Richardson constant and homogeneous barrier height values of 106.2 Acm−2 K−2 and 1.21 eV, 23.4 Acm−2 K−2 and 0.63 eV for Ag/MoOx/n-Si and Ag/MoOx/p-Si heterostructures, respectively. The results demonstrate that thermally evaporated MoOx has particular advantages due to its good rectifying characteristics such as the extra enhancement to barrier height and low contact resistivity for interfacial layer applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Thankappan, S. Divya, A.K. Augustine, C.P. Girijavallaban, P. Radhakrishnan, S. Thomas, V.P.N. Nampoori, Thin Solid Films 583, 102 (2015)

    Article  CAS  Google Scholar 

  2. J. Chen, J. Lv, Q. Wang, Thin Solid Films 616, 145 (2016)

    Article  CAS  Google Scholar 

  3. K. Y. Mitra, C. Sternkiker, C. Martínez-Domingo, E. Sowade, E. Ramon, J. Carrabina, H. L. Gomes, and R. R. Baumann, Flex. Print. Electron. 2, (2017)

  4. S. Mahato, J. Puigdollers, Phys. B 530, 327 (2018)

    Article  CAS  Google Scholar 

  5. R. Priya, M.S. Raman, N.S. Kumar, J. Chandrasekaran, R. Balan, Optik (Stuttg). 127, 7913 (2016)

    Article  CAS  Google Scholar 

  6. S. Mahato, C. Voz, D. Biswas, S. Bhunia, and J. Puigdollers, Mater. Res. Express 6, (2019)

  7. H. Nasser, G. Kökbudak, H. Mehmood, R. Turan, Energy Procedia 124, 418 (2017)

    Article  CAS  Google Scholar 

  8. L.G. Gerling, S. Mahato, A. Morales-Vilches, G. Masmitja, P. Ortega, C. Voz, R. Alcubilla, J. Puigdollers, Sol. Energy Mater. Sol. Cells 145, 109 (2016)

    Article  CAS  Google Scholar 

  9. J. Bullock, M. Hettick, J. Geissbühler, A. J. Ong, T. Allen, C. M. Sutter-Fella, T. Chen, H. Ota, E. W. Schaler, S. De Wolf, C. Ballif, A. Cuevas, and A. Javey, Nat. Energy 1, (2016)

  10. J. Bullock, A. Cuevas, T. Allen, and C. Battaglia, Appl. Phys. Lett. 105, (2014)

  11. H. Ali, S. Koul, G. Gregory, J. Bullock, A. Javey, A. Kushima, K.O. Davis, Phys. Status Solidi Appl. Mater. Sci. 216, 1 (2019)

    Google Scholar 

  12. J. Bullock, Y. Wan, Z. Xu, S. Essig, M. Hettick, H. Wang, W. Ji, M. Boccard, A. Cuevas, C. Ballif, A. Javey, ACS Energy Lett. 3, 508 (2018)

    Article  CAS  Google Scholar 

  13. O. Almora, L.G. Gerling, C. Voz, R. Alcubilla, J. Puigdollers, G. Garcia-Belmonte, Sol. Energy Mater. Sol. Cells 168, 221 (2017)

    Article  CAS  Google Scholar 

  14. G. Masmitjà, L.G. Gerling, P. Ortega, J. Puigdollers, I. Martín, C. Voz, R. Alcubilla, J. Mater. Chem. A 5, 9182 (2017)

    Article  Google Scholar 

  15. L.G. Gerling, C. Voz, R. Alcubilla, J. Puigdollers, J. Mater. Res. 32, 260 (2017)

    Article  CAS  Google Scholar 

  16. H. Mehmood, H. Nasser, T. Tauqeer, S. Hussain, E. Ozkol, R. Turan, Int. J. Energy Res. 42, 1563 (2018)

    Article  CAS  Google Scholar 

  17. H. Mehmood, H. Nasser, T. Tauqeer, R. Turan, Renew. Energy 143, 359 (2019)

    Article  CAS  Google Scholar 

  18. M. Bivour, B. Macco, J. Temmler, W.M.M. Kessels, M. Hermle, Energy Procedia 92, 443 (2016)

    Article  CAS  Google Scholar 

  19. M. Bivour, J. Temmler, H. Steinkemper, M. Hermle, Sol. Energy Mater. Sol. Cells 142, 34 (2015)

    Article  CAS  Google Scholar 

  20. F. Feldmann, M. Simon, M. Bivour, C. Reichel, M. Hermle, and S. W. Glunz, Appl. Phys. Lett. 104, (2014)

  21. J. Bullock, C. Samundsett, A. Cuevas, D. Yan, Y. Wan, T. Allen, IEEE J. Photovoltaics 5, 1591 (2015)

    Article  Google Scholar 

  22. R.A. Street, Phys. Rev. Lett. 49, 1187 (1982)

    Article  CAS  Google Scholar 

  23. M. Bivour, S. Schröer, M. Hermle, Energy Procedia 38, 658 (2013)

    Article  CAS  Google Scholar 

  24. Z.C. Holman, A. Descoeudres, L. Barraud, F.Z. Fernandez, J.P. Seif, S. De Wolf, C. Ballif, IEEE J. Photovoltaics 2, 7 (2012)

    Article  Google Scholar 

  25. J. Bullock, A. Cuevas, C. Samundsett, D. Yan, J. McKeon, Y. Wan, Sol. Energy Mater. Sol. Cells 138, 22 (2015)

    Article  CAS  Google Scholar 

  26. N. Miyata, T. Suzuki, R. Ohyama, Thin Solid Films 281–282, 218 (1996)

    Article  Google Scholar 

  27. H. Mehmood, H. Nasser, T. Tauqeer, and R. Turan, Proc. 33rd Eur. Photovolt. Sol. Energy Conf. Exhib. 25 - 29 Sept. 2017, Amsterdam, Holl. 932 (2017)

  28. O. Akdemir, M. Zolfaghari Borra, H. Nasser, R. Turan, and A. Bek, Int. J. Energy Res. 44, 3098 (2020)

  29. D. Ahiboz, H. Nasser, and R. Turan, Proc. 2016 Int. Renew. Sustain. Energy Conf. IRSEC 2016 144 (2017)

  30. S.A. Tomas, M.A. Arvizu, O. Zelaya-Angel, P. Rodriguez, Thin Solid Films 518, 1332 (2009)

    Article  CAS  Google Scholar 

  31. M. Arita, H. Kaji, T. Fujii, Y. Takahashi, Thin Solid Films 520, 4762 (2012)

    Article  CAS  Google Scholar 

  32. R. Singh, R. Sivakumar, S.K. Srivastava, T. Som 507, 144958 (2020)

    CAS  Google Scholar 

  33. M. Gülnahar, H. Efeoğlu, Solid-State Electronics 53, 972 (2009)

    Article  Google Scholar 

  34. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Clarendon, Oxford, 1988)

    Google Scholar 

  35. D.K. Schroder, Semiconductor Material and Device Characterization, 3rd edn. (Wiley, New York, 2006)

    Google Scholar 

  36. W. Shockley, Research and investigation of inverse epitaxial UHF power transistors (Air Force at. Lab. Wright-Patterson Air Force Base Ohio, 1964)

  37. H.H. Berger, Solid State Electron. 15, 145 (1972)

    Article  Google Scholar 

  38. H.B. Harrison, IEEE Trans. Energy Convers. 4, 160 (1989)

    Article  Google Scholar 

  39. J. P. Kleider, A. S. Gudovskikh, and P. Roca I Cabarrocas, Appl. Phys. Lett. 92, (2008)

  40. H. Abdy, A. Aletayeb, M. Kolahdouz, E.A. Soleimani, AIP Adv. 9, 015216 (2019)

    Article  Google Scholar 

  41. R.T. Tung, Phys. Rev. B 45, 13509 (1992)

    Article  CAS  Google Scholar 

  42. J. Osvald, Solid State Electron. 35, 1629 (1992)

    Article  CAS  Google Scholar 

  43. Ö. S. Aniltürk and R. Turan, Solid. State. Electron. 44, 41 (2000)

  44. J. H. Werner and H. H. Güttler, J. Appl. Phys. 69, 1522 (1991)

  45. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981), p. 245

    Google Scholar 

  46. M. Gülnahar, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 46, 3960 (2015)

Download references

Funding

Hisham Nasser and Raşit Turan acknowledge the financial support from the Scientific and Technological Research Council of Turkey (TÜBİTAK) [Grant Number 217M087]. Hisham Nasser acknowledges the financial support from TÜBİTAK [Grant Number 217M203].

Author information

Authors and Affiliations

Authors

Contributions

MG: Conceptualization, Methodology, Investigation, Wiring—Original draft preparation. HN: Investigation, Supervision, Reviewing and Editing, Project administration. AS: Methodology. RT: Supervision, Resources, Project administration, Funding acquisition.

Corresponding author

Correspondence to Hisham Nasser.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gülnahar, M., Nasser, H., Salimi, A. et al. On the electrical and charge conduction properties of thermally evaporated MoOx on n- and p-type crystalline silicon. J Mater Sci: Mater Electron 32, 1092–1104 (2021). https://doi.org/10.1007/s10854-020-04884-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04884-5

Navigation