Skip to main content

Advertisement

Log in

Nonlinear Modeling of Lithium-Ion Battery Cells for Electric Vehicles using a Hammerstein–Wiener Model

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

Lithium-ion batteries are a popular electrical storage choice for electric vehicles. This is motivated by their many advantages, such as their high energy density and cycling performance. This article aims to present a nonlinear model for the dynamic behavior of lithium-ion battery cells. For this purpose, we use measurements of electric vehicles at different driving cycles. This allows us to model lithium-ion battery cells using their dynamic behavior in real-world use cases. The proposed model is developed using a nonlinear Hammerstein–Wiener model to accurately predict the behavior of these cells. The proposed model prediction performance is evaluated using mean squared error (MSE), final prediction error (FPE), and goodness of fit between the Hammerstein–Wiener (H–W) model and the measured battery cell output. The results show that the model is able to predict battery cell behavior with great accuracy: The goodness of fit value shows that the presented Hammerstein–Wiener model matches the battery cell data by 93.77% in the identification phase, and by 93.74% in the validation phase for LA-92 drive cycle. In order to show the efficiency of the selected model (H–W), a comparative study is also conducted with other model types including a neural network model, a linear model and an equivalent electrical circuit model using the same measurements. The (H–W) model presented in this paper achieved better results in term of MSE compared to the other models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Lai X, Gao W, Zheng Y et al (2019) A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries. Electrochim Acta 295:1057–1066

    Article  Google Scholar 

  2. Song Z, Hofmann H, Lin X et al (2018) Parameter identification of lithium-ion battery pack for different applications based on Cramer-Rao bound analysis and experimental study. Appl Energy 231:1307–1318

    Article  Google Scholar 

  3. Ali E (2014) Advanced electric drive vehicles. CRC Press, Boca Roton

    Google Scholar 

  4. Chemali E, Preindl M, Malysz P et al (2016) Electrochemical and electrostatic energy storage and management systems for electric drive vehicles: State-of-the-art review and future trends. IEEE J Emerg Select Topics in Power Electron 4(3):1117–1134

    Article  Google Scholar 

  5. Lu L, Han X, Li J et al (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288

    Article  Google Scholar 

  6. Dedryvere R, Foix D, Franger S et al (2010) Electrode/electrolyte interface reactivity in high-voltage spinel LiMn1. 6Ni0. 4O4/Li4Ti5O12 lithium-ion battery. J Phys Chem C 114(24):10999–11008

    Article  Google Scholar 

  7. Wang B, Xu J, Cao B et al (2015) A novel multimode hybrid energy storage system and its energy management strategy for electric vehicles. J Power Sources 281:432–443

    Article  Google Scholar 

  8. Zhang S, Guo X, Zhang X (2019) Modeling of back-propagation neural network based state-of-charge estimation for lithium-ion batteries with consideration of capacity attenuation. Adv Electr Comput Eng 19(3):3–11

    Article  Google Scholar 

  9. Laadissi EM, Anas EF, Zazi M, Jaouad K (2019) Parameter identification of a lithium-ion battery model using Levenberg-Marquardt algorithm. J Eng Appl Sci 14:1267–1273

    Article  Google Scholar 

  10. Saldaña G, San Martín JI, Zamora I et al (2019) Analysis of the current electric battery models for electric vehicle simulation. Energies 12(14):2750

    Article  Google Scholar 

  11. Hu X-S, Sun F-C, Li S-B et al (2013) NARX modelling of a lithium iron phosphate battery used for electrified vehicle simulation. Int J Model Identifi Control 20(2):181–189

    Article  Google Scholar 

  12. Wills A, Schön TB, Ljung L et al (2013) Identification of Hammerstein–Wiener models. Automatica 49(1):70–81

    Article  MathSciNet  Google Scholar 

  13. Schoukens J, Nemeth JG, Crama P et al (2003) Fast approximate identification of nonlinear systems. Automatica 39(7):1267–1274

    Article  MathSciNet  Google Scholar 

  14. Taringou F, Hammi O, Srinivasan B et al (2010) Behaviour modelling of wideband RF transmitters using Hammerstein–Wiener models. IET Circ Dev Syst 4(4):282–290

    Article  Google Scholar 

  15. Bai E-W, Cai Z, Dudley-Javorosk S et al (2009) Identification of a modified Wiener-Hammerstein system and its application in electrically stimulated paralyzed skeletal muscle modeling. Automatica 45(3):736–743

    Article  MathSciNet  Google Scholar 

  16. Palanthandalam-Madapusi HJ, Ridley AJ, Bernstein DS (2005) Identification and prediction of ionospheric dynamics using a Hammerstein–Wiener model with radial basis functions. In: Proceedings of the 2005, American Control Conference, 2005. IEEE, 2005, pp.5052–5057

  17. Nadimi ES, Green O, Blanes-Vidal V et al (2012) Hammerstein–Wiener model for the prediction of temperature variations inside silage stack-bales using wireless sensor networks. Biosyst Eng 112(3):236–247

    Article  Google Scholar 

  18. Kollmeyer PJ, Lamb W, Juang LW, et al (2012) Design of an electric powertrain for a Ford F150 crew cab truck utilizing a lithium battery pack and an interior PM synchronous machine drive. In: 2012 IEEE Transportation Electrification Conference and Expo (ITEC). IEEE, 2012; pp 1–8

  19. Panasonic (2016) Panasonic NCR18650PF Lithium-Ion Battery Datasheet (June2016),”2016

  20. Panasonic (2013) Introduction of NCR18650PF, Panasonic

  21. de Lorenzo G, Andaloro L, Sergi F et al (2014) Numerical simulation model for the preliminary design of hybrid electric city bus power train with polymer electrolyte fuel cell. Int J Hydrogen Energy 39(24):12934–12947

    Article  Google Scholar 

  22. Dai H, Zhao G, Lin M et al (2018) A novel estimation method for the state of health of lithium-ion battery using prior knowledge-based neural network and Markov chain. IEEE Trans Ind Electron 66(10):7706–7716

    Article  Google Scholar 

  23. Ma C, Zhai X, Wang Z et al (2019) State of health prediction for lithium-ion batteries using multiple-view feature fusion and support vector regression ensemble. Int J Mach Learn Cybern 10(9):2269–2282

    Article  Google Scholar 

  24. Topić J, Škugor B, Deur J (2019) Neural network-based modeling of electric vehicle energy demand and all electric range. Energies 12(7):1396

    Article  Google Scholar 

  25. Schoukens J, Pintelon R, Rolain Y et al (2015) Structure discrimination in block-oriented models using linear approximations: a theoretic framework. Automatica 53:225–234

    Article  MathSciNet  Google Scholar 

  26. Lu S, Jingzhuo S (2019) Nonlinear Hammerstein model of ultrasonic motor for position control using differential evolution algorithm. Ultrasonics 94:20–27

    Article  Google Scholar 

  27. Alonge F, Rabbeni R, Pucci M et al (2015) Identification and robust control of a quadratic DC/DC boost converter by Hammerstein model. IEEE Trans Ind Appl 51(5):3975–3985

    Article  Google Scholar 

  28. Khani F, Haeri M (2015) Robust model predictive control of nonlinear processes represented by Wiener or Hammerstein models. Chem Eng Sci 129:223–231

    Article  Google Scholar 

  29. Atam E, Schulte DO, Arteconi A et al (2018) Control-oriented modeling of geothermal borefield thermal dynamics through Hammerstein–Wiener models. Renew Energy. 120:468–477

    Article  Google Scholar 

  30. Kollmeyer P (2018) Panasonic 18650PF Li-ion battery data. Mendeley Data. https://doi.org/10.17632/wykht8y7tg.1#file-60630e7e-2f6b-4fae-94be-cbbf3af667ab

    Article  Google Scholar 

  31. Kollmeyer P (2018) Panasonic 18650PF Li-ion battery data. Mendeley Data. https://doi.org/10.17632/wykht8y7tg.1#file-76dca304-6d8d-41d5-b072-e481e188732c

    Article  Google Scholar 

  32. Kollmeyer P (2018) Panasonic 18650PF Li-ion battery data. Mendeley Data. https://doi.org/10.17632/wykht8y7tg.1#file-cafcb053-254f-458f-b032-e63545bd5db8

    Article  Google Scholar 

  33. Kollmeyer P (2018) Panasonic 18650PF Li-ion Battery Data. Mendeley Data. https://doi.org/10.17632/wykht8y7tg.1#file-dfb72398-880e-43ba-ba07-cfae1e093d06

    Article  Google Scholar 

  34. Giakoumis EG (2017) Driving and engine cycles. Springer, Cham

    Book  Google Scholar 

  35. Kollmeyer P, Hackl A, Emadi A et al (2017) Li-ion battery model performance for automotive drive cycles with current pulse and EIS parameterization. In: 2017 IEEE Transportation Electrification Conference and Expo (ITEC). IEEE, 2017, pp 486–492

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaouad Khalfi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalfi, J., Boumaaz, N., Soulmani, A. et al. Nonlinear Modeling of Lithium-Ion Battery Cells for Electric Vehicles using a Hammerstein–Wiener Model. J. Electr. Eng. Technol. 16, 659–669 (2021). https://doi.org/10.1007/s42835-020-00607-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-020-00607-2

Keywords

Navigation