Skip to main content

Advertisement

Log in

The Network Ontogeny of the Parrot: Altriciality, Dynamic Skeletal Assemblages, and the Avian Body Plan

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

We analyze the connectivity patterns and fusion events among bones leading to the adult skeletal organization during the development of the superaltricial monk parakeet (Myiopsitta monachus, Psittaciformes), providing insights about the functional and evolutionary significance in the avian structural design. By using whole mount specimens stained for cartilage and bone, we apply anatomical network analysis (AnNA) to study the ontogenetic trajectory of the entire skeleton from embryonic stage 34 to adult. As bones condense, connect, and fuse to each other, we follow skeletal assemblages forming networks that change dynamically as the monk parakeet grows. Our results show that the pelvic girdle connects with the vertebral column prior to the pectoral girdle and that the pelvic girdle and hindlimbs connection begins and ends before that of the pectoral girdle and the forelimbs. We hypothesize that connections of the girdles and limbs could be linked to the altriciality of the species due to requirements for active movement in the use of the hindlimbs inside the nest, but not the need to use forelimbs to fly until much later. Further, as bones of the skull and pelvis fuse during development they form the largest and more connected assemblages, acting as attractors to connect to other bones, showing congruence between the connectivity pattern at each ontogenetic stage and the characteristic avian body plan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Materials used in this work are available in the collection of the institute where the work has been carried out (LHYEDEC, FCV, UNLP, Argentina). All the data obtained is included in this submission.

Code Availability

Software, package and codes used in this work are freely available.

References

  • Aramburú, R. M. (1997). Descripción y desarrollo del pichón de la cotorra Myiopsitta monachus monachus (Aves: Psittacidae) en una población silvestre de Argentina. Revista Chilena de Historia Natural, 70, 53–58.

    Google Scholar 

  • Bailleul, A. M., Scannella, J. B., Horner, J. R., & Evans, D. C. (2016). Fusion patterns in the skulls of modern archosaurs reveal that sutures are ambiguous maturity indicators for the Dinosauria. PLoS ONE, 11, e0147687.

    Article  Google Scholar 

  • Baumel, J. J., & Witmer, L. M. (1993). Osteologia. In J. J. Baumel, A. S. King, J. E. Breazile, H. E. Evans, & J. C. Vannden Berge (Eds.), Handbook of avian anatomy: Nomina anatomica avium. Nuttall ornithological club, no. 23 (2nd Ed.) (pp. 45–132). Cambridge, MA: Museum of Comparative Zoology, Harvard University.

  • Canavelli, S. B., Swisher, M. E., & Branch, L. C. (2013). Factors related to farmers’ preferences to decrease monk parakeet damage to crops. Human Dimensions of Wildlife, 18, 124–137.

    Article  Google Scholar 

  • Carril, J., & Tambussi, C. P. (2015). Development of the superaltricial monk parakeet (Aves, Psittaciformes): Embryo staging, growth, and heterochronies. The Anatomical Record, 298, 1836–1847.

    Article  Google Scholar 

  • Carril, J., & Tambussi, C. P. (2017). Skeletogenesis of Myiopsitta monachus (Psittaciformes) and sequence heterochronies in Aves. Evolution & Development, 19, 17–28.

    Article  Google Scholar 

  • Cau, A. (2018). The assembly of the avian body plan: A 160-million-year long process. Bollettino della Società Paleontologica Italiana, 57, 1–25.

  • Chatterjee, S. (2015). The rise of birds: 225 million years of evolution (2nd ed.). Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Chiappe, L. M., & Witmer, L. M. (2002). Mesozoic birds: Above the heads of dinosaurs. Berkeley, CA: University of California Press.

    Google Scholar 

  • Clarke, J. A., Tambussi, C. P., Noriega, J. I., Erickson, G. M., & Ketcham, R. A. (2005). Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature, 433, 305–308.

    Article  CAS  Google Scholar 

  • Collar, N. J. (1997). Family Psittacidae (parrots). In J. Del Hoyo, A. Elliott, & J. Sargatal (Eds.), Handbook of the birds of the world: sandgrouse to cuckoos (Vol. 4, pp. 280–477). Barcelona: Lynx Editions.

    Google Scholar 

  • Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal Complex Systems, 1695, 1–9.

    Google Scholar 

  • Dingerkus, G., & Uhler, D. (1977). Enzyme clearing of alcian blue stained whole small vertebrates for demostration of cartilage. Stain Technology, 52, 229–232.

    Article  CAS  Google Scholar 

  • Esteve-Altava, B., Botella, H., Marugán-Lobón, J., & Rasskin-Gutman, D. (2013). Structural constraints in the evolution of the skull: Williston’s law revisited. Evolutionary Biology, 40, 209–219.

    Article  Google Scholar 

  • Esteve-Altava, B., Diogo, R., Smith, C., Boughner, J. C., & Rasskin-Gutman, D. (2015). Anatomical networks reveal the musculoskeletal modularity of the human head. Scientific Reports, 5, 8298.

    Article  CAS  Google Scholar 

  • Esteve-Altava, B., Marugán-Lobón, J., Botella, H., Bastir, M., & Rasskin-Gutman, D. (2013). Grist for Riedl’s mill: A network model perspective on the integration and modularity of the human skull. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 320, 489–500.

    Article  Google Scholar 

  • Esteve-Altava, B., Marugán-Lobón, J., Botella, H., & Rasskin-Gutman, D. (2014). Random loss and selective fusion of bones originate morphological complexity trends in tetrapod skull networks. Evolutionary Biology, 41, 52–61.

    Article  Google Scholar 

  • Esteve-Altava, B., & Rasskin-Gutman, D. (2014a). Beyond the functional matrix hypothesis: A network null model of human skull growth for the formation of bone articulations. Journal of Anatomy, 225, 306–316.

    Article  Google Scholar 

  • Esteve-Altava, B., & Rasskin-Gutman, D. (2014b). Theoretical morphology of tetrapod skull networks. Comptes Rendus Palevol, 13, 41–50.

    Article  Google Scholar 

  • Esteve-Altava, B., & Rasskin-Gutman, D. (2015). Evo-Devo insights from pathological networks: Exploring craniosynostosis as a developmental mechanism for modularity and complexity in the human skull. Journal of Anthropological Sciences, 93, 103–117.

    PubMed  Google Scholar 

  • Esteve-Altava, B., & Rasskin-Gutman, D. (2018). Anatomical network analysis in Evo-Devo. In L. Nuño de la Rosa & G. B. Müller (Eds.), Evolutionary developmental biology (pp. 1–19). New York: Springer.

    Google Scholar 

  • Esteve-Altava, B., Vallès Català, T., Guimerà, R., Sales-Pardo, M., & Rasskin-Gutman, D. (2017). Bone fusion in normal and pathological development is constrained by the network architecture of the human skull. Scientific Reports, 7, 3376.

    Article  Google Scholar 

  • Heers, A. M., & Dial, K. P. (2012). From extant to extinct: Locomotor ontogeny and the evolution of avian flight. Trends in Ecology and Evolution, 27, 296–305.

    Article  Google Scholar 

  • Hogg, D. A. (1978). The articulations of the neurocranium in the postnatal skeleton of the domestic fowl (Gallus gallus domesticus). Journal of Anatomy, 127, 53–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hogg, D. A. (1982). Fusions occurring in the postcranial skeleton of the domestic fowl. Journal of Anatomy, 135, 501–512.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jollie, M. T. (1957). The head skeleton of the chicken and remarks on the anatomy of this region in other birds. Journal of Morphology, 100, 389–436.

    Article  Google Scholar 

  • Lee, M. S. Y., Cau, A., Naish, D., & Dyke, G. J. (2014). Morphological clocks in palaeontology, and a mid-Cretaceous origin of crown Aves. Systematic Biology, 63, 442–449.

    Article  Google Scholar 

  • Makovicky, P. J., & Zanno, L. E. (2011). Theropod diversity and the refinement of avian characteristics. In D. Gareth & G. Kaiser (Eds.), Living dinosaurs: The evolutionary history of modern birds (1st ed., pp. 9–29). New York: Wiley.

    Chapter  Google Scholar 

  • Maxwell, E. E. (2008). Comparative embryonic development of the skeleton of the domestic turkey Meleagris gallopavo and other galliform birds. Zoology, 111, 242–257.

    Article  Google Scholar 

  • Navarro-Díaz, D., Esteve-Altava, B., & Rasskin-Gutman, D. (2019). Disconnecting bones within the jaw-otic network modules underlies mammalian middle ear evolution. Journal of Anatomy, 235, 15–33.

    PubMed  Google Scholar 

  • Plateau, O., & Foth, C. (2020). Birds have peramorphic skulls, too: Anatomical network analyses reveal oppositional heterochronies in avian skull evolution. Communications Biology, 3, 1–12.

    Article  Google Scholar 

  • Prum, R. O., Berv, J. S., Dornburg, A., Field, D. J., Townsend, J. P., Moriarty Lemmon, E., & Lemmon, A. R. (2015). A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature, 526, 569–573.

    Article  CAS  Google Scholar 

  • R Development Core Team. (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Rashid, D. J., Surya, K., Chiappe, L. M., Carroll, N., Garrett, K. L., Varghese, B., et al. (2018). Avian tail ontogeny, pygostyle formation, and interpretation of juvenile Mesozoic specimens. Scientific Reports, 8, 1–12.

    Article  Google Scholar 

  • Rasskin-Gutman, D., & Esteve-Altava, B. (2014). Connecting the dots: Anatomical network analysis in morphological EvoDevo. Biological Theory, 9, 178–193.

    Article  Google Scholar 

  • Rasskin-Gutman, D., & Esteve-Altava, B. (2018). Concept of burden in Evo-Devo. In L. Nuño de la Rosa & G. B. Müller (Eds.), Evolutionary developmental biology (pp. 1–11). New York: Springer.

    Google Scholar 

  • Ricklefs, R. E., & Starck, J. M. (1998). Embryonic growth and development. In R. E. Ricklefs & J. M. Starck (Eds.), Avian growth and development. Evolution within the altricial precocial spectrum (pp. 31–58). New York: Oxford University Press.

    Google Scholar 

  • Riedl, R. (1978). Order in living organisms: A systems analysis of evolution. New York: Wiley.

    Google Scholar 

  • Schoch, R. R. (2010). Riedl’s burden and the body plan: Selection, constraint, and deep time. Journal of Experimental Zoology, 314B, 1–10.

    Article  Google Scholar 

  • Skawiński, T., Borczyk, B., & Hałupka, L. (2020). Postnatal ossification sequences in Acrocephalus scirpaceus and Chroicocephalus ridibundus (Aves: Neognathae): The precocial–altricial spectrum and evolution of compound bones in birds. Journal of Anatomy, August, 1–16.

  • Starck, J. M. (1993). Evolution of avian ontogenies. In D. M. Powers (Ed.), Current ornithology (pp. 275–366). New York: Plenum Press.

    Chapter  Google Scholar 

  • Wallace, A. (1997). The origin of animal body plans: A study in evolutionary developmental biology. Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Acknowledgements

Helpful comments made by the Editor, Olivia Plateau and a second anonymous Reviewer greatly improved the manuscript. Thanks to Dr. Federico J. Degrange and Dr. Juan José Rustán for the help in collecting samples. This research was supported by Grant PICT 2017-1899 from FONCyT-ANPCyT to JC. DR-G was funded by Grant BFU2015-70927-R. We are grateful to CONICET for permanent support.

Funding

JC was funded by Grant: PICT 2017-1899, FONCyT, ANPCyT, Argentina. DR-G was funded by Grant: BFU2015-70927-R, España.

Author information

Authors and Affiliations

Authors

Contributions

JC: study conception and design-equal, material preparation and data collection-lead, writing original draft-equal, writing-review & editing-equal. CPT: study conception and design-equal, writing original draft-equal, writing-review & editing-equal. DR-G: study conception and design-supporting, formal data analysis-lead, writing-review & editing-equal.

Corresponding author

Correspondence to Julieta Carril.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The authors declare that the materials used were obtained complying with the current laws of the country in which they were performed (Argentina).

Informed Consent

All authors agree to participate in the manuscript and obtain consent from the responsible authorities at the institute where the work has been carried out.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Matrixes of the skeleton and throughout the ontogenetic trajectory of Myiopsitta monachus, from embryonic stage 34 to adult, where 1 indicates presence and 0 indicates absence of connection. For references see abbreviations of each node in Table 1. The connectivity value (ki) of each node is shown (in bold) in the last column of each matrix. (XLS 2348 kb)

Supplementary Material 2

Detail of anatomical networks of the skeleton of Myiopsitta monachus throughout development (from embryological stage 34 to adult). For references see abbreviations of each node in Table 1. (PDF 2921 kb)

Electronic supplementary material 3 (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carril, J., Tambussi, C.P. & Rasskin-Gutman, D. The Network Ontogeny of the Parrot: Altriciality, Dynamic Skeletal Assemblages, and the Avian Body Plan. Evol Biol 48, 41–53 (2021). https://doi.org/10.1007/s11692-020-09522-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-020-09522-w

Keywords

Navigation