Skip to main content
Log in

Effect of Nd substitution on magnetoelectric properties of Sm2BaCuO5

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

We have investigated the magnetic and magnetoelectric properties of solid solutions in the green phase region of the 211-cuprate system Sm2−xNdxBaCuO5 (x = 0.2, 0.4 and 0.6). These compounds crystallize in the centrosymmetric orthorhombic (Pnma) structure. Upon substitution of Nd, the antiferromagnetic ordering temperature of Cu2+ ions (TN1 = 24 K) and Sm3+/Nd3+ ions (TN2 = 5 K) remain unchanged. Dielectric anomalies appear at TN1 under applied magnetic field, whose magnitude increases with field, and at TN2 = 5 K under zero magnetic field for all three compounds. Applied magnetic fields induce electric polarization at TN1 that vary linearly with magnetic fields. While the polarization decreases below TN2 in x = 0 and 0.2, it is enhanced for the samples with x = 0.4 and 0.6. Interestingly, an additional anomaly is observed in dielectric and electric polarization data at 23 K for the composition x = 0.4 under the magnetic fields. Our study reveals that the substitution of Nd significantly modifies the electrical properties due to changes in the interactions between 4f–3d moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure  2
Figure  3
Figure 4
Figure  5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759

    Article  CAS  Google Scholar 

  2. Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123

    Article  CAS  Google Scholar 

  3. Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y 2003 Nature 426 55

    Article  CAS  Google Scholar 

  4. Kleemann W, Borisov P, Bedanta S and Shvartsman V V 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 2228

    Article  Google Scholar 

  5. Rao C N R, Sundaresan A and Saha R 2012 J. Phys. Chem. Lett. 3 2237

    Article  CAS  Google Scholar 

  6. Bibes M and Barthélémy A 2008 Nat. Mater. 7 425

    Article  CAS  Google Scholar 

  7. Scott J F 2012 J. Mater. Chem. 22 4567

    Article  CAS  Google Scholar 

  8. Fusil S, Garcia V, Barthélémy A and Bibes M 2014 Annu. Rev. Mater. Res. 44 91

    Article  CAS  Google Scholar 

  9. Ortega N, Kumar A, Scott J F and Katiyar R S 2015 J. Phys. Condens. Matter. 27 504002

    Article  CAS  Google Scholar 

  10. Michel C and Raveau B 1982 J. Solid State Chem. 43 73

    Article  CAS  Google Scholar 

  11. Salinas-Sanchez A, Garcia-Muñoz J L, Rodriguez-Carvajal J, Saez-Puche R and Martinez J L 1992 J. Solid State Chem. 100 201

    Article  CAS  Google Scholar 

  12. Ganguli A K, Vasanthacharya N Y and Rao C N R 1995 Eur. J. Solid State Inorg. Chem. 32 509

    CAS  Google Scholar 

  13. Salinas-Sánchez A and Sáez-Puche R 1993 Solid State Ion. 63 927

    Article  Google Scholar 

  14. Sáez Puche R, Climent E, Romero De Paz J, Martínez J L, Monge M A and Cascales C 2005 Phys. Rev. B: Condens. Matter Mater. Phys. 71 1

    Google Scholar 

  15. Nozaki H, Ikuta H, Yamada Y, Matsushita A, Takahashi H, Hirabayashi I et al 2000 Phys. Rev. B: Condens. Matter Mater. Phys. 62 9555

    Article  CAS  Google Scholar 

  16. Sáez Puche R, Climent E, Jiménez-Melero E, De Paz J R, Martínez J L and Fernández-Díaz M T 2006 J. Alloys Compd. 408 613

    Article  Google Scholar 

  17. Sáez-Puche R, Herrera S R and Martínez J L 1998 J. Alloys Compd. 269 57

    Article  Google Scholar 

  18. Yanda P, Ter-Oganessian N V and Sundaresan A 2019 Phys. Rev. B 100 104417

    Article  CAS  Google Scholar 

  19. Indra A, Mukherjee S, Majumdar S, Gutowski O, Zimmermann M V and Giri S 2019 Phys. Rev. B 100 014413

    Article  CAS  Google Scholar 

  20. De C, Ghara S and Sundaresan A 2015 Solid State Commun. 205 61

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Sheikh Saqr Laboratory (SSL) and International Centre for Materials Science (ICMS) at Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) for various experimental facilities. SM acknowledges JNCASR for providing research fellowship (JNC/S0692). PY acknowledges UGC grants commission for the Ph.D. fellowship (Award No. 2121450729). AS acknowledges BRICS research project, Department of Science and Technology, Government of India for a research grant (Sl. No. DST/IMRCD/BRICS/PilotCall2/EMPMM/2018(G)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Sundaresan.

Additional information

This article is part of the Topical Collection: SAMat Focus Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 625 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Yanda, P. & Sundaresan, A. Effect of Nd substitution on magnetoelectric properties of Sm2BaCuO5. Bull Mater Sci 43, 305 (2020). https://doi.org/10.1007/s12034-020-02238-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02238-9

Keywords

Navigation