Skip to main content
Log in

Effect of Copper Content on the Corrosion of Carbon Steel in a Sweet Brine

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The effect of copper content, on the nature and roughness of the corrosion products formed on carbon steel in a synthetic brine saturated with CO2 at room temperature, was studied using a jet impact chamber tuned at different impact angles. Corrosion rate was determined by linear polarization resistance, and steels behavior was described by electrochemical impedance spectroscopy. The corrosion products formed on steel were characterized by scanning electron microscopy, electron-dispersive analysis, optical profilometry and grazing incidence X-ray diffraction. The chemical composition and morphology of corrosion products affected corrosion rate. For the different steels, Fe3C and iron oxides provided a low degree of protection. Steels with higher copper contents showed a decrease in corrosion rate due to the formation of copper oxides (CuO and Cu2O), which apparently offered a stronger physical barrier between the aggressive environment and the substrate. Small roughness of corrosion products was correlated with more compact and uniform layers of corrosion products and also to lower corrosion rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shaohua, Z.; Lifeng, H.; Huayun, D.; Huan, W.; Baosheng, L.; Yinghui, W.: An electrochemical study on the effect of bicarbonate ion on the corrosion behaviour of carbon steel in CO2 saturated NaCl solutions. Vacuum (2019). https://doi.org/10.1016/j.vacuum.2019.06.038

    Article  Google Scholar 

  2. Zhang, Y.; Pang, X.; Qu, S.; Li, X.; Gao, K.: Discussion of the CO2 corrosion mechanism between low partial pressure and supercritical condition. Corros. Sci. (2012). https://doi.org/10.1016/j.corsci.2012.03.006

    Article  Google Scholar 

  3. Okonkwo, C.; Ahmad, F.; Hossein, B.: Effect of muscat oilfield brine on the stressed X-70 pipeline steel. Vacuum (2019). https://doi.org/10.1016/j.vacuum.2019.03.013

    Article  Google Scholar 

  4. Zhenguang, L.; Xiuhua, G.; Lindxiu, D.; Jianping, L.; Ping, L.; Chi, Y.; Misra, Y.W.: Comparison of corrosion behaviour of low-alloy pipeline steel exposed to H2S/CO2 saturated brine and vapour saturated H2S/CO2 environments. Electrochim. Acta (2017). https://doi.org/10.1016/j.electacta.2017.02.114

    Article  Google Scholar 

  5. Guokun, H.; Lidan, Q.; Yunzhou, L.; Yongzhe, W.; Hongge, L.; Zuoxiang, Q.; Xing, L.: Corrosion resistance improvement of 45 steel by Fe-based amorphous coating. Vacuum (2018). https://doi.org/10.1016/j.vacuum.2018.03.042

    Article  Google Scholar 

  6. Safi, R.; Agarwal, R.; Banerjee, S.: Numerical simulation and optimization of CO2 utilization for enhanced oil recovery from depleted reservoirs. Chem. Eng. Sci. (2016). https://doi.org/10.1016/j.ces.2016.01.021

    Article  Google Scholar 

  7. Barker, R.; Burkle, D.; Charpentier, T.; Thompson, H.; Neville, A.: A review of iron carbonate (FeCO3) formation in the oil and gas industry. Corros. Sci. (2018). https://doi.org/10.1016/j.corsci.2018.07.021

    Article  Google Scholar 

  8. Yuan Li, Y.; Frank, C.: In-situ characterization of the early stage of pipeline steel corrosion in bicarbonate solutions by electrochemical atomic force microscopy. Surf. Interface Anal. (2017). https://doi.org/10.1002/sia.6071

    Article  Google Scholar 

  9. Cáceres, L.; Vargas, T.; Herrera, L.: Influence of pitting and iron oxide formation during corrosion of carbon steel in unbuffered NaCl solutions. Corros. Sci. (2009). https://doi.org/10.1016/j.corsci.2009.02.021

    Article  Google Scholar 

  10. Faysal, F.; Akram, A.: Influence of temperature on the corrosion behavior of API-X100 pipeline steel in 1-bar CO2–HCO3 solutions: an electrochemical study. Mater. Chem. Phys. (2013). https://doi.org/10.1016/j.matchemphys.2013.03.061

    Article  Google Scholar 

  11. Lining, X.; Hui, X.; Weijing, S.; Bei, W.; Jinyang, Z.: Passivation of X65 (UNS K03014) carbon steel in NaHCO3 solution in a CO2 environment. Corros. Sci. (2016). https://doi.org/10.1016/j.corsci.2016.04.012

    Article  Google Scholar 

  12. Linter, B.; Burstein, G.: Reactions of pipeline steels in carbon dioxide solutions. Corros. Sci. (1999). https://doi.org/10.1016/S0010-938X(98)00104-8

    Article  Google Scholar 

  13. Zhang, G.; Cheng, Y.: Corrosion of X65 steel in CO2: saturated oilfield water in the absence and presence of acetic acid. Corros. Sci. (2009). https://doi.org/10.1016/j.corsci.2009.04.004

    Article  Google Scholar 

  14. Zhang, G.; Cheng, Y.: On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production. Corros. Sci. (2009). https://doi.org/10.1016/j.corsci.2008.10.013

    Article  Google Scholar 

  15. Joshi, G.; Cooper, K.; Zhong, X.; Cook, A.; Ahmad, E.; Harrison, N.; Engelberg, D.; Lindsay, R.: Temporal evolution of sweet oilfield corrosion scale: phases, morphologies, habits, and protection. Corros. Sci. (2018). https://doi.org/10.1016/j.corsci.2018.07.009

    Article  Google Scholar 

  16. Yohei, T.; Eiichiro, M.; Shigeru, S.; Yoshinori, O.; Takuya, K.; Hiroyuki, K.; Junichiro, M.: In-situ X-ray diffraction of corrosion products formed on iron surfaces. Mater. Trans. (2005). https://doi.org/10.2320/matertrans.46.637

    Article  Google Scholar 

  17. López, D.; Pérez, T.; Simison, S.: The influence of microstructure and chemical composition of carbon and low alloy steels in CO2 corrosion. A state-of-the-art appraisal. Mater. Perform. (2003). https://doi.org/10.1016/S0261-3069(03)00158-4

    Article  Google Scholar 

  18. Smith, S.: Current understanding of corrosion mechanisms due to H2S in oil and gas production environments. In: Corrosion NACexpo 2015: Corrosion Conference and exposition; NACE International, Corros. Sci. Dallas, TX, USA, vol 7, p 4567 (2015)

  19. ANSI/NACE, TM 0284-2011: Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking; NACE International. Corros. Sci. Houston Texas (2011)

  20. ANSI/NACE, TM 0177-96: Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H2S Environments; NACE International, Corros. Sci. Houston Texas (1997)

  21. Chivot, J.: Thermodynamique des Produits de Corrosion. Andra, Châtenay-Malabry (2004)

    Google Scholar 

  22. Zhou, Y.; Zhang, P.; Zuo, Y.; Liu, D.; Yan, F.: The structure and composition of corrosion product film and its relation to corrosion rate for carbon steels in CO2 saturated solutions at different temperatures. J. Braz. Chem. Soc. (2017) https://doi.org/10.21577/0103-5053.20170147

  23. Neff, J.; Lee, K.; DeBlois, E.M.: Produced Water: Overview of Composition, Fates, and Effects in Produced Water, pp. 3–54. Springer, New York (2011)

    Book  Google Scholar 

  24. Toril, I.; Utvik, R.: Chemical characterisation of produced water from four offshore oil production platforms in the North Sea. Chemosphere (1999). https://doi.org/10.1016/S0045-6535(99)00171-X

    Article  Google Scholar 

  25. England, A.H.; Duffin, A.M.; Schwartz, C.P.; Uejio, J.S.; Prendergast, D.; Saykally, R.J.: On the hydration and hydrolysis of carbon dioxide. Chem. Phys. Lett. (2011). https://doi.org/10.1016/j.cplett.2011.08.063

    Article  Google Scholar 

  26. Kandavel, T.; Chandramouli, R.; Karthikeyan, P.: Influence of alloying elements and density on aqueous corrosion behaviour of some sintered low alloy. Mater. Des. (2012). https://doi.org/10.1016/j.matdes.2012.03.033

    Article  Google Scholar 

  27. Wang, R.; Liu, M.; Sheji, L.; Yuna, X.: Electrochemical corrosion performance of Cr and Al alloy steels using a J55 carbon steel as base alloy. Corros. Sci. (2014). https://doi.org/10.1016/j.corsci.2014.04.023

    Article  Google Scholar 

  28. Qiufa, X.; Kewei, G.; Wenting, L.; Xiaolu, P.: Effects of alloyed Cr and Cu on the corrosion behavior of low-alloy steel in a simulated groundwater. Corros. Sci. (2016). https://doi.org/10.1016/j.corsci.2015.09.025

    Article  Google Scholar 

  29. Park, S.; Kim, J.; Yoon, J.: Effect of W, Mo, and Ti on the corrosion behavior of low-alloy steel in sulfuric acid. Corrosion (2014). https://doi.org/10.5006/0923

    Article  Google Scholar 

  30. Hashimoto, K.; Asami, K.; Kawashima, A.; Habazaki, H.; Akiyama, E.: The role of corrosion resistant alloying elements in passivity. Corros. Sci. (2007). https://doi.org/10.1016/j.corsci.2006.05.003

    Article  Google Scholar 

  31. Weiming, L.; Qingjun, Z.; Liaosha, L.; Zhaojin, W.; Fabin, C.; Zhifang, G.: Effect of alloy element on corrosion behavior of the huge crude oil storage tank steel in seawater. J. Alloys Compd. (2014). https://doi.org/10.1016/j.jallcom.2014.01.181

    Article  Google Scholar 

  32. Guo, S.; Xu, L.; Zhang, L.; Wei, C.; Minxu, L.: Corrosion of alloy steels containing 2% chromium in CO2 environments. Corros. Sci. (2012). https://doi.org/10.1016/j.corsci.2012.06.006

    Article  Google Scholar 

  33. Nguyen, D.; Min, K.; Young, W.; Yang, J.G.: Effect of tin on the corrosion behavior of low alloy steel in an acid chloride solution. Corros. Sci. (2010). https://doi.org/10.1016/j.corsci.2009.08.036

    Article  Google Scholar 

  34. Kato, C.; Grabke, H.; Egert, B.; Panzner, G.: Electrochemical and surface analytical studies on hydrogen permeation with Fe-Cu alloys in sulfuric acid with and without H2S. Corros. Sci. (1984). https://doi.org/10.1016/0010-938X(84)90077-5

    Article  Google Scholar 

  35. Suzuki, S.; Shinoda, K.; Sato, M.; Fujimoto, S.; Yamashita, M.; Konishi, H.; Doi, T.; Kamimuta, T.; Imoue, K.; Waseda, Y.: Changes in chemical state and local structure of green rust by addition of copper sulphate ions. Corros. Sci. (2008). https://doi.org/10.1016/j.corsci.2008.02.022

    Article  Google Scholar 

  36. Cano, H.; Neff, D.; Morcillo, M.; Dillmann, P.; Diaz, I.; Fuente, D.: Characterization of corrosion products formed on Ni 2.4 wt%–Cu 0.5 wt%–Cr 0.5 wt% weathering steel exposed in marine atmospheres. Corros. Sci. (2014). https://doi.org/10.1016/j.corsci.2014.07.011

    Article  Google Scholar 

  37. Cano, H.; Dìaz, I.; De la Fuente, D.; Chico, B.; Morcillo, M.: Effect of Cu, Cr and Ni alloying elements on mechanical properties and atmospheric corrosion resistance of weathering steels in marine atmospheres of different aggressivities. Mater. Corros. (2018). https://doi.org/10.1002/maco.201709656

    Article  Google Scholar 

  38. Hang, S.; Xia, L.; Cai, F.; Feng, C.; Hao, L.: Effects of Cu on corrosion resistance of low alloyed steels in acid chloride media. J. Iron. Steel Res. Int. (2014). https://doi.org/10.1016/S1006-706X(14)60096-0

    Article  Google Scholar 

  39. Feilong, S.; Xiaogang, L.; Fan, Z.; Xuequn, C.; Cheng, C.; Nianchun, W.; Yukun, Y.; Jinbin, Z.: Corrosion mechanism of resistant steel developed for bottom plate of cargo oil tanks. Acta Metall. Sin. (Engl. Lett.) 26, 257–264 (2013)

    Article  Google Scholar 

  40. Li, H.; Zhao, C.; Yan, T.; Ding, C.; Zhang, H.: Properties of high temperature oxidation of heat-resistant steel with aluminium and copper. Mater. Sci. (2019). https://doi.org/10.5755/j01.ms.25.4.20899

    Article  Google Scholar 

  41. Young, W.J.; Ji, H.H.; Jung, G.K.: Effects of copper on the corrosion properties of low-alloy steel in an acid-chloride environment. J. Met. Mater. Int. 15, 623–629 (2009)

    Article  Google Scholar 

  42. Hong, J.H.; Lee, S.H.; Kim, J.G.; Yoon, J.B.: Corrosion behaviour of copper containing low alloy steels in sulphuric acid. Corr. Sci. (2012). https://doi.org/10.1016/j.corsci.2011.09.012

    Article  Google Scholar 

  43. Dooley, R.; Chexal, V.: Flow-accelerated corrosion of pressure vessels in fossil plants. Int. J. Press. Vessel. Pipe (2000). https://doi.org/10.1016/S0308-0161(99)00087-3

    Article  Google Scholar 

  44. Poulson, B.: Complexities in predicting erosion corrosion. Wear (1999). https://doi.org/10.1016/S0043-1648(99)00235-5

    Article  Google Scholar 

  45. Gammal, M.; Mazhar, H.; Cotton, J.; Shefski, C.; Pietralik, J.; Ching, C.: The hydrodynamic effects of single-phase flow on flow accelerated corrosion in a 90-degree elbow. Nucl. Eng. Des. (2010). https://doi.org/10.1016/j.nucengdes.2009.12.005

    Article  Google Scholar 

  46. Nasrazadani, S.; Nakka, R.; Hopkins, D.; Stevens, J.: Characterization of oxides on FAC susceptible small-bore carbon steel piping of a power plant. Int. J. Press. Vessel. Pip. (2009). https://doi.org/10.1016/j.ijpvp.2009.10.003

    Article  Google Scholar 

  47. Wael, A.; Mufatiu, M.; Meamer, N.; Abdelsalam, A.; Hassam, B.: Experimental investigation of flow accelerated corrosion under two-phase flow conditions. Nucl. Eng. Des. (2014). https://doi.org/10.1016/j.nucengdes.2013.11.073

    Article  Google Scholar 

  48. Jamaluddin, M.; Muhamadu, M.; Esah, H.: Effect of flow pattern at pipe bends on corrosion behaviour of low carbon steel and its challenges. J. Teknol. (2013). https://doi.org/10.11113/jt.v63.1123

  49. Petric, G.; Ksiazek, W.: Flow accelerated corrosion in industrial steam and powerplants. In: Engineering and Papermarkers Conference (1997)

  50. Sydberger, T.; Lotz, U.: Relation between mass transfer and corrosion in a turbulent pipe line Flow. J. Electrochem. Soc. (1982). https://doi.org/10.1149/1.2123812

    Article  Google Scholar 

  51. Ajmal, T.; Shashi, A.; Udupa, K.: Effect of hydrodynamics on the flow accelerated corrosion (FAC) and electrochemical impedance behavior of line pipes steel for petroleum industry. Int. J. Press. Vessel. Pipe (2019). https://doi.org/10.1016/j.ijpvp.2019.05.013

    Article  Google Scholar 

  52. Melchers, R.: Effect of small compositional changes on marine immersion corrosion of low alloy steels. Corros. Sci. 46, 1669–1691 (2004)

    Article  Google Scholar 

  53. Almeaya, F.: Técnicas electroquímicas. Memorias II Congreso Internacional de Materiales y VI Congreso de Corrosión y Protección, CITEMA-UIS, Bucaramanga (2003)

  54. Stern, M.; Geary, A.: Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves. J. Electrochem. Soc. (1957). https://doi.org/10.1149/1.2428496

    Article  Google Scholar 

  55. McCafferty, E.: Validation of corrosion rates measured by the Tafel extrapolation method. Corros. Sci. (2005). https://doi.org/10.1016/j.corsci.2005.05.046

    Article  Google Scholar 

  56. Clarkson, J.; Price, T.; Adams, C.: Role of metastable phases in the spontaneous precipitation of calcium carbonate. J. Chem. Soc. Faraday Trans. (1992). https://doi.org/10.1039/FT9928800243

    Article  Google Scholar 

  57. Sun, J.; Zhang, G.; Lui, W.; Lu, M.: The formation mechanism of corrosion scale and electrochemical characteristics of low alloy steel in carbon dioxide-saturated solution. Corros. Sci. (2012). https://doi.org/10.1016/j.corsci.2011.12.025

    Article  Google Scholar 

  58. Ko, M.; Ingham, B.; Laycock, N.; Williams, D.: In situ synchrotron X-ray diffraction study of the effect of microstructure and boundary layer conditions on CO2 corrosion of pipeline steels. Corros. Sci. (2015). https://doi.org/10.1016/j.corsci.2014.10.010

    Article  Google Scholar 

  59. Fioravante, I.; Nunes, S.; Acciari, H.; Acciaria, H.; Codaro, E.: Films formed on carbon steel in sweet environments—a review. J. Braz. Chem. Soc. (2019). https://doi.org/10.21577/0103-5053.20190055

  60. Kermani, M.B.; Morshed, A.: Carbon Dioxide Corrosion in Oil and Gas Production—A Compendium. Corrosion The Journal Science and Eng. (2003). https://doi.org/10.5006/1.3277596

    Article  Google Scholar 

  61. Farelas, F.; Galicia, M.; Brown, B.; Nesic, S.; Castaneda, H.: Evolution of dissolution processes at the interface of carbon steel corroding in a CO2 environment studied by EIS. Corros. Sci. (2010). https://doi.org/10.1016/j.corsci.2009.10.007

    Article  Google Scholar 

  62. Hong, J.; Lee, S.; Kim, J.; Yoon, J.: Corrosion Behaviour of cooper containing low alloy steels in sulphuric acid. Corros. Sci. (2012). https://doi.org/10.1016/j.corsci.2011.09.012

    Article  Google Scholar 

  63. Pech, M.; Chi, L.: Investigation of the inhibitive effect of N-phosphono-methyl-glycine on the corrosion of carbon steel in neutral solutions by electrochemical techniques. Corros. Sci. (1999). https://doi.org/10.5006/1.3283931

    Article  Google Scholar 

  64. Bonnel, A.; Dabosi, F.; Deslouis, C.; Duprat, M.; Keddam, M.; Tribollet, B.: Corrosion study of a carbon steel in neutral chloride solutions by impedance techniques. J. Electrochem. Soc. (1983). https://doi.org/10.1149/1.2119798

    Article  Google Scholar 

Download references

Acknowledgements

LEA would like to thank COTEBAL-México for sponsorship under N.B. to carry out his studies of doctorate degree. Authors also acknowledge IPN ESIQIE (Mexico) and IMP (Mexico) for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Elizalde-Aguilar or M. A. Domínguez-Aguilar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elizalde-Aguilar, L., Domínguez-Aguilar, M.A., Cabrera-Sierra, R. et al. Effect of Copper Content on the Corrosion of Carbon Steel in a Sweet Brine. Arab J Sci Eng 46, 6879–6894 (2021). https://doi.org/10.1007/s13369-020-05083-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05083-4

Keywords

Navigation