Skip to main content
Log in

Investigation of the physical properties of (Cu0.5Tl0.5)Ba2Ca2Cu3O10-δ impregnated with mono cobalt(II)-substituted Undecatungstosilicate Nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A series of (Cu0.5Tl0.5)Ba2Ca2Cu3O10-δ superconducting samples impregnated with different percentage additions of potassium salt {CoSiW11}x nanoparticles (x = 0.00, 0.01, 0.02, 0.04, 0.06, 0.08 and 0.12 wt.%) were prepared using a single-step solid-state reaction technique at ambient pressure. These samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) to study their structures, construction of the synthesized samples and elemental composition, respectively. XRD studies indicate that the tetragonal structure of (Cu0.5Tl0.5)-1223 phase has not changed by the addition of {CoSiW11} nanoparticles the same as for the values of lattice parameters a and c, where they show a non-remarkable change. The relative volume fraction of (CuTl)-1223 phase record a maximum value for x = 0.02 wt.%. The formation of (CuTl)-1223 phase matches the presence of rectangular-shaped plates seen in SEM images. The enhancement of these plates after the addition of {CoSiW11} nanoparticles up to x = 0.02 wt.% agreed with the measurements of relative volume fraction. The mass percentage of all elements was measured using the EDX technique, which shows the distribution composition of both superconductor and nanoparticle compounds. Vibrational mode analyses of oxygen were accomplished via Fourier transform infrared (FTIR) spectroscopy in (CuTl)-1223 phase impregnated with {CoSiW11} nanoparticles. The Oδ oxygen modes observed are almost unaltered while the other oxygen modes of planar CuO2 are slightly softened and hardened. Superconducting transition temperature (Tc) and critical current density (Jc) were determined from the electrical resistivity and I–V measurements, respectively. The results indicate an increase in the Tc values from 125 K for the pure sample to 132 K for x = 0.02 wt.% impregnated samples, while a decrease in the Jc values is observed upon increasing ‘x’ value from x = 0.00 up to 0.12 wt.%. The suppression of these electrical superconducting parameters for x > 0.02 wt.% may be due to an increase of weak links' connectivity among the grain boundaries and growth of impurity phases that affect the formation of (CuTl)-1223 superconductor phase. The fluctuation-induced conductivity (FIC) analysis has been done in the light of the Aslamasov–Larkin (AL) theory to study the fluctuation conductivity Δσ above Tc as a function of reduced temperature for (CoSiW11)x/(CuTl)-1223 superconductor. The results show four non-identical fluctuation regions that are short-wave (Sw), two-dimensional (2D), three-dimensional (3D) and critical (Cr). The zero-temperature coherence length (\({\xi }_{c}(0)\)), the effective layer thickness of the two-dimensional system (d), inter-layer coupling (I), Fermi velocity (vF) and Fermi energy (EF) were evaluated as a function of ‘x’ addition from FIC analysis of the samples and then correlated to the superconductivity order parameters. The superconducting parameters were increased upon the addition of {CoSiW11} nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.H. Pu, W.H. Song, B. Zhao, X.C. Wu, Y.P. Sun, J.J. Du, J. Fang, Phys. C 361, 181 (2001)

    ADS  Google Scholar 

  2. H. Ihara, K. Tanaka, Y. Tanaka, A. Iyo, N. Terada, M. Tokumoto, F. Tateai, M. Kawamura, K. Ishida, S. Miyashita, T. Watanabe, Phys. B 284–288, 1085 (2000)

    ADS  Google Scholar 

  3. H. Ihara, K. Tanaka, Y. Tanaka, A. Iyo, N. Terada, M. Tokumoto, M. Ariyama, I. Hase, A. Sundaresan, N. Hamada, S. Miyashita, K. Tokiwa, T. Watanabe, Phys. C 341–348, 487 (2000)

    ADS  Google Scholar 

  4. M. Mumtaz, S.M. Hasnain, A.A. Khurram, N.A. Khan, J. Appl. Phys. 109, 023906 (2011)

    ADS  Google Scholar 

  5. H. Ihara, K. Tokiwa, K. Tanaka, T. Tsukamoto, T. Watanabe, H. Yamamoto, A. Iyo, M. Tokumoto, M. Umeda, Phys. C 282–287, 957 (1997)

    ADS  Google Scholar 

  6. I. Qasim, M. Waqee-ur-Rehman, M. Mumtaz, G. Hussain, K. Nadeem, K. Shehzad, J. Magn. Magn. Mater. 403, 60 (2016)

    ADS  Google Scholar 

  7. N.H. Mohammed, Phys. C 485, 95 (2013)

    ADS  Google Scholar 

  8. L.G. Aslamasov, A.I. Larkin, Phys. Lett. A 26, 238 (1968)

    ADS  Google Scholar 

  9. Y. Jia, P. Cheng, L. Fang, H. Luo, H. Yang, C. Ren, L. Shan, C. Gu, H.-H. Wen, Appl. Phys. Lett. 93, 032503 (2008)

    ADS  Google Scholar 

  10. S. Rajput, S. Chaudhary, J. Mater. 2013, 1 (2013)

    Google Scholar 

  11. G.H. Lee, R. Abd-Shukor, AIP Conf. Proc. 1528, 292 (2013)

    ADS  Google Scholar 

  12. K.T. Lau, S.Y. Yahya, R. Abd-Shukor, J. Appl. Phys. 99, 123904 (2006)

    ADS  Google Scholar 

  13. M.M. Elokr, R. Awad, A. Abd El-Ghany, A. Abou Shama, A. Abd El-wanis, J. Supercond. Nov. Magn. 24, 1345 (2011)

    Google Scholar 

  14. M. Mumtaz, Z. Iqbal, M.R. Hussain, L. Ali, M. Waqee-ur-Rehman, M. Saqib, J. Supercond. Nov. Magn. 31, 1315 (2018)

    Google Scholar 

  15. N. Hassan, N.A. Khan, J. Alloy. Compd. 471, 39 (2009)

    Google Scholar 

  16. N.H. Mohammed, A.I. Abou-Aly, I.H. Ibrahim, R. Awad, M. Rekaby, J. Alloy. Compd. 486, 733 (2009)

    Google Scholar 

  17. N.A. Khan, M. Irfan, Phys. C 468, 2341 (2008)

    ADS  Google Scholar 

  18. L. Youssef, G. Younes, R. Al-Oweini, J. Taibah Univ. Sci. 13, 274 (2019)

    Google Scholar 

  19. F. Yahya, H. El-Rassy, G. Younes, R. Al-Oweini, Int. J. Environ. Anal. Chem. 99, 1375 (2019)

    Google Scholar 

  20. R. Al-Oweini, B.S. Bassil, M. Itani, D.B. Emiroğlu, U. Kortz, Acta Cryst. C 74, 1390 (2018)

    Google Scholar 

  21. M. Natali, I. Bazzan, S. Goberna-Ferrón, R. Al-Oweini, M. Ibrahim, B.S. Bassil, H. Dau, F. Scandola, J.R. Galán-Mascarós, U. Kortz, A. Sartorel, I. Zaharieva, M. Bonchio, Green Chem. 19, 2416 (2017)

    Google Scholar 

  22. A. Bijelic, C. Molitor, S.G. Mauracher, R. Al-Oweini, U. Kortz, A. Rompel, ChemBioChem 16, 233 (2015)

    Google Scholar 

  23. R. Al-Oweini, A. Sartorel, B.S. Bassil, M. Natali, S. Berardi, F. Scandola, U. Kortz, M. Bonchio, Angew. Chem. Int. Ed. 53, 11182 (2014)

    Google Scholar 

  24. R. Al-Oweini, S. Aghyarian, H. El-Rassy, J. Sol–Gel Sci. Technol 61, 541 (2012)

    Google Scholar 

  25. N.E. Ghouch, R. Al-Oweini, R. Awad, Mater. Res. Express 6, 116001 (2019)

    ADS  Google Scholar 

  26. N.E. Ghouch, R. Al-Oweini, R. Awad, Appl. Phys. A 12, 1 (2019)

    Google Scholar 

  27. A. Müller, L. Dloczik, E. Diemann, M.T. Pope, Inorg. Chim. Acta 257, 231 (1997)

    Google Scholar 

  28. T. Huang, N. Tian, Q. Wu, Y. Yan, W. Yan, Mater. Chem. Phys. 165, 34 (2015)

    Google Scholar 

  29. N. Tian, M. Zhu, Q. Wu, W. Yan, A.B. Yaroslavtsev, Mater. Lett. 115, 165 (2014)

    Google Scholar 

  30. F.J. Berry, G.R. Derrick, M. Mortimer, Polyhedron 68, 17 (2014)

    Google Scholar 

  31. M.J. da Silva, L.C. de Andrade-Leles, R. Natalino, S.O. Ferreira, N.C. Coronel, Catal. Lett. 148, 1202 (2018)

    Google Scholar 

  32. Frans. Zonnevijlle, C. M. Tourne, and G. F. Tourne, Inorg. Chem. 21, 2742 (1982).

  33. Z. Li, W. Li, X. Li, F. Pei, X. Wang, H. Lei, J. Inorg. Biochem. 101, 1036 (2007)

    Google Scholar 

  34. M. Sadakane, D. Tsukuma, M.H. Dickman, B.S. Bassil, U. Kortz, M. Capron, W. Ueda, Dalton Trans. 26, 2833 (2007)

    Google Scholar 

  35. R. Al-Oweini, H. El-Rassy, J. Mol. Struct. 919, 140 (2009)

    ADS  Google Scholar 

  36. R. Al-Oweini, B.S. Bassil, T. Palden, B. Keita, Y. Lan, A.K. Powell, U. Kortz, Polyhedron 52, 461 (2013)

    Google Scholar 

  37. R. Al-Oweini, B.S. Bassil, J. Friedl, V. Kottisch, M. Ibrahim, M. Asano, B. Keita, G. Novitchi, Y. Lan, A. Powell, U. Stimming, U. Kortz, Inorg. Chem. 53, 5663 (2014)

    Google Scholar 

  38. T.A.G. Duarte, A.C. Estrada, M.M.Q. Simões, I.C.M.S. Santos, A.M.V. Cavaleiro, M.G.P.M.S. Neves, J.A.S. Cavaleiro, Catal. Sci. Technol. 5, 351 (2015)

    Google Scholar 

  39. M. Saeidifar, H. Mirzaei, N. Ahmadi-Nasab, H. Mansouri-Torshizi, J. Mol. Struct. 1148, 339 (2017)

    ADS  Google Scholar 

  40. W. Abdeen, A. El-Tahan, R. Awad, A.I. Abou-Aly, E.M. El-Maghraby, A. Khalaf, Appl. Phys. A 122, 574 (2016)

    ADS  Google Scholar 

  41. K. Kocabaş, M. Gökçe, M. Çiftçioğlu, Ö. Bilgili, J. Supercond. Novel Magn. 23, 397 (2010)

    Google Scholar 

  42. M. Imran, M. Z. Khan, M. Waqee-Ur-Rehman, A. Ullah, S. Ahmed, K. Nadeem, and M. Mumtaz, J. Low. Temp. Phys. (2020)

  43. M. Me, Barakat and K. Habanjar, J Adv Ceram 6, 100 (2017)

    Google Scholar 

  44. A. Srour, R. Awad, W. Malaeb, M.M.E. Barakat, J. Low Temp. Phys. 189, 217 (2017)

    ADS  Google Scholar 

  45. R. Awad, A.I. Abou-Aly, S. Isber, W. Malaeb, J. Phys. 43, 474 (2006)

    Google Scholar 

  46. P. Badica, A. Iyo, A. Crisan, Y. Ishiura, A. Sundaresan, H. Ihara, Supercond. Sci. Technol. 15, 964 (2002)

    ADS  Google Scholar 

  47. H. Salamati, P. Kameli, Solid State Commun. 125, 407 (2003)

    ADS  Google Scholar 

  48. V.P.S. Awana, S.K. Malik, W.B. Yelon, C.A. Cardoso, O.F. de Lima, A. Gupta, A. Sedky, A.V. Narlikar, Phys. C 338, 197 (2000)

    ADS  Google Scholar 

  49. M. Mumtaz, N.A. Khan, S.M. Hasnain, F. Ashraf, J. Supercond. Nov. Magn 25, 2291 (2012)

    Google Scholar 

  50. N.E. Ghouch, R. Al-Oweini, R. Awad, J. Low Temp. Phys. 200, 62 (2020)

    ADS  Google Scholar 

  51. A. Mellekh, M. Zouaoui, F. Ben-Azzouz, M. Annabi, M. Ben-Salem, Solid State Commun. 140, 318 (2006)

    ADS  Google Scholar 

  52. J. Zhang, F. Liu, G. Cheng, J. Shang, J. Liu, S. Cao, Z. Liu, Phys. Lett. A 201, 70 (1995)

    ADS  Google Scholar 

  53. K.A. Jasim, L.A. Mohammed, J. Phys. Conf. Ser. 1003, 012071 (2018)

    Google Scholar 

  54. Y. Slimani, E. Hannachi, M.K. Ben Salem, A. Hamrita, M.B. Salem, F.B. Azzouz, J. Supercond. Nov. Magn. 28, 3001 (2015)

    Google Scholar 

  55. A. Nishida, C. Taka, I. Shigeta, Phys. C 392–396, 349 (2003)

    ADS  Google Scholar 

  56. A.K. Ghosh, S.K. Bandyopadhyay, P. Barat, P. Sen, A.N. Basu, Phys. C 255, 319 (1995)

    ADS  Google Scholar 

  57. T.M. Katona, S.W. Pierson, Phys. C 270, 242 (1996)

    ADS  Google Scholar 

  58. S.E. Mousavi Ghahfarokhi, M. Zargar Shoushtari, Phys. B Condens. Matter 405, 4643 (2010)

    ADS  Google Scholar 

  59. A.K. Pradhan, S.B. Roy, P. Chaddah, C. Chen, B.M. Wanklyn, Phys. Rev. B 50, 7180 (1994)

    ADS  Google Scholar 

  60. I. Van Driessche, A. Buekenhoudt, K. Konstantinov, E. Bruneel, S. Hoste, Appl. Supercond. 4, 185 (1996)

    Google Scholar 

  61. L. Reggiani, R. Vaglio, A.A. Varlamov, Phys. Rev. B 44, 9541 (1991)

    ADS  Google Scholar 

  62. C.J. Lobb, Phys. Rev. B 36, 3930 (1987)

    ADS  Google Scholar 

  63. A.I. Abou-Aly, R. Awad, I.H. Ibrahim, W. Abdeen, Solid State Commun. 149, 281 (2009)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid Malaeb.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasser, A., Srour, A., El Ghouch, N. et al. Investigation of the physical properties of (Cu0.5Tl0.5)Ba2Ca2Cu3O10-δ impregnated with mono cobalt(II)-substituted Undecatungstosilicate Nanoparticles. Appl. Phys. A 126, 951 (2020). https://doi.org/10.1007/s00339-020-04083-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04083-3

Keywords

Navigation