Skip to main content

Advertisement

Log in

Potential role of TrkB agonist in neuronal survival by promoting CREB/BDNF and PI3K/Akt signaling in vitro and in vivo model of 3-nitropropionic acid (3-NP)-induced neuronal death

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Striatal neurons depends on an afferent supply of brain-derived neurotrophic factor-(BDNF) that explicitly interacts with tropomyosin receptor kinase B (TrkB) receptor and performs sundry functions including synaptic plasticity, neuronal differentiation and growth. Therefore, we aimed to scrutinize an active molecule that functions identical to BDNF in activating TrkB receptor and it’s downstream targets for restoring neuronal survival in Huntington disease (HD). Data from in vitro Neuro-2a cell line showed that treatment with 7,8-dihydroxyflavone (7,8-DHF), improved 3-nitropropionic acid (3-NP) induced neuronal death by stabilizing the loss of mitochondrial membrane potential and transiently increased the activity of cAMP-response element-binding protein (CREB) and BDNF via TrkB receptor activation. Consistent with in vitro findings, our in vivo results stated that treatment with 7,8-DHF at a dose of 10 mg/kg body weight ameliorated various behavior alterations caused by 3-NP intoxication. Further histopathological and electron microscopy evidences from striatal region of 3-NP mice brain treated with 7,8-DHF showed more improved neurons with intact mitochondria and less autophagic vacuoles. Protein expression analysis of both in vitro and in vivo study showed that 7,8-DHF promotes neuronal survival through upregulation and phosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt at serine-473/threonine-308). Akt phosphorylation additionally phosphorylates Bad at serine-136 and inhibits its translocation to mitochondria thereby promoting mitochondrial biogenesis, enhanced ATP production and inhibit apoptosis mediated neuronal death. These aforementioned findings help in strengthening our hypothesis and has come up with a novel neuroprotective mechanism of 7,8-DHF against 3-NP induced neuronal death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

HD:

Huntington’s disease

3-NP:

3-Nitropropionic acid

7,8-DHF:

7,8-Dihydroxyflavone

BDNF:

Brain-derived neurotrophic factor

ANA-12:

2N-[2-[[(Hexahydro-2-oxo-1H-azepin-3-yl)amino]carbonyl]phenyl]benzo[b] thiophene-2-carboxamide

Wort:

Wortmannin

TrkB:

Tropomyosin-related kinase B

CREB:

CAMP-response element binding protein

PI3K:

Phosphatidylinositol 3-kinase

Akt:

Protein kinase B

Bad:

Bcl-2-associated death promoter

Bcl-2:

B-cell lymphoma 2

References

  1. Mollersen L, Rowe AD, Larsen E, Rognes T, Klungland A (2010) Continuous and periodic expansion of CAG repeats in Huntington’s disease R6/1 mice. PLoS Genet 6:e1001242

    PubMed  PubMed Central  Google Scholar 

  2. Sari Y (2011) Huntington’s disease: from mutant huntingtin protein to neurotrophic factor therapy. Int J Biomed Sci 7:89–100

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jiang M, Peng Q, Liu X et al (2013) Small-molecule TrkB receptor agonists improve motor function and extend survival in a mouse model of Huntington’s disease. Hum Mol Genet 22:2462–2470

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Schulte J, Littleton JT (2011) The biological function of the Huntingtin protein and its relevance to Huntington’s Disease pathology. Curr Trends Neurol 5:65–78

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mandavilli BS, Boldogh I, Van Houten B (2005) 3-Nitropropionic acid-induced hydrogen peroxide, mitochondrial DNA damage, and cell death are attenuated by Bcl-2 overexpression in PC12 cells. Mol Brain Res 133:215–223

    CAS  PubMed  Google Scholar 

  6. Sato S, Gobbel GT, Honkaniemi J et al (1997) Apoptosis in the striatum of rats following intraperitoneal injection of 3-nitropropionic acid. Brain Res 745:343–347

    CAS  PubMed  Google Scholar 

  7. Sugino T, Nozaki K, Tokime T, Hashimoto N, Kikuchi H (1997) 3-Nitropropionic acid induces poly (ADP-ribosyl) ation and apoptosis related gene expression in the striatum in vivo. Neurosci Lett 237:121–124

    CAS  PubMed  Google Scholar 

  8. Zuccato C, Liber D, Ramos C et al (2005) Progressive loss of BDNF in a mouse model of Huntington’s disease and rescue by BDNF delivery. Pharmacol Res 52:133–139

    CAS  PubMed  Google Scholar 

  9. Tejeda GS, Díaz-Guerra M (2017) Integral characterization of defective BDNF/TrkB signalling in neurological and psychiatric disorders leads the way to new therapies. Int J Mol Sci 18:268

    PubMed Central  Google Scholar 

  10. Larsson E, Nanobashvili A, Kokaia Z, Lindvall O (1999) Evidence for neuroprotective effects of endogenous brain-derived neurotrophic factor after global forebrain ischemia in rats. J Cereb Blood Flow Metab 19:1220–1228

    CAS  PubMed  Google Scholar 

  11. Xie Y, Hayden MR, Xu B (2010) BDNF overexpression in the forebrain rescues Huntington’s disease phenotypes in YAC128 mice. J Neurosci 30:14708–14718

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Peng Q, Masuda N, Jiang M et al (2008) The antidepressant sertraline improves the phenotype, promotes neurogenesis and increases BDNF levels in the R6/2 Huntington’s disease mouse model. Exp Neurol 210:154–163

    CAS  PubMed  Google Scholar 

  13. Canals JM, Pineda JR, Torres-Peraza JF et al (2004) Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci 24:7727–7739

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pérez-Navarro E, Canudas AM, Åkerud P, Alberch J, Arenas E (2000) Brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 prevent the death of striatal projection neurons in a rodent model of Huntington’s disease. J Neurochem 75:2190–2199

    PubMed  Google Scholar 

  15. Numakawa T, Suzuki S, Kumamaru E, Adachi N, Richards M, Kunugi H (2010) BDNF function and intracellular signaling in neurons. Histol Histopathol 25:237–258

    CAS  PubMed  Google Scholar 

  16. Wu C-H, Hung T-H, Chen C-C et al (2014) Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS ONE 9:e113397

    PubMed  PubMed Central  Google Scholar 

  17. Downward J (2004) PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol 15:177–182

    CAS  PubMed  Google Scholar 

  18. Almeida R, Manadas B, Melo C et al (2005) Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ 12:1329

    CAS  PubMed  Google Scholar 

  19. Jeon SJ, Rhee SY, Seo JE et al (2011) Oroxylin A increases BDNF production by activation of MAPK–CREB pathway in rat primary cortical neuronal culture. Neurosci Res 69:214–222

    CAS  PubMed  Google Scholar 

  20. Ochs G, Penn RD, York M et al (2000) A phase I/II trial of recombinant methionyl human brain derived neurotrophic factor administered by intrathecal infusion to patients with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis Other Motor Neuron Disorders 1:201–206

    CAS  PubMed  Google Scholar 

  21. Jang SW, Liu X, Yepes M et al (2010) A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci USA 107:2687–2692

    CAS  PubMed  Google Scholar 

  22. Liu C, Chan CB, Ye K (2016) 7,8-dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders. Translat Neurodegen 5:2

    Google Scholar 

  23. Luo D, Shi Y, Wang J et al (2016) 7,8-dihydroxyflavone protects 6-OHDA and MPTP induced dopaminergic neurons degeneration through activation of TrkB in rodents. Neurosci Lett 620:43–49

    CAS  PubMed  Google Scholar 

  24. He J, Xiang Z, Zhu X et al (2016) Neuroprotective effects of 7,8-dihydroxyflavone on midbrain dopaminergic neurons in MPP+-treated monkeys. Sci Rep 6:34339

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Castello NA, Nguyen MH, Tran JD, Cheng D, Green KN, LaFerla FM (2014) 7,8-Dihydroxyflavone, a small molecule TrkB agonist, improves spatial memory and increases thin spine density in a mouse model of Alzheimer disease-like neuronal loss. PLoS ONE 9:e91453

    PubMed  PubMed Central  Google Scholar 

  26. Korkmaz OT, Aytan N, Carreras I et al (2014) 7,8-Dihydroxyflavone improves motor performance and enhances lower motor neuronal survival in a mouse model of amyotrophic lateral sclerosis. Neurosci Lett 566:286–291

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jang M, Lee MJ, Cho I-H (2014) Ethyl pyruvate ameliorates 3-nitropropionic acid-induced striatal toxicity through anti-neuronal cell death and anti-inflammatory mechanisms. Brain Behav Immun 38:151–165

    CAS  PubMed  Google Scholar 

  28. Zhao J, Du J, Pan Y et al (2019) Activation of cardiac TrkB receptor by its small molecular agonist 7,8-dihydroxyflavone inhibits doxorubicin-induced cardiotoxicity via enhancing mitochondrial oxidative phosphorylation. Free Radic Biol Med 130:557–567

    CAS  PubMed  Google Scholar 

  29. Fernagut PO, Diguet E, Labattu B, Tison F (2002) A simple method to measure stride length as an index of nigrostriatal dysfunction in mice. J Neurosci Methods 113:123–130

    PubMed  Google Scholar 

  30. Perucho J, Casarejos MJ, Gomez A et al (2013) Striatal infusion of glial conditioned medium diminishes huntingtin pathology in r6/1 mice. PLoS ONE 8:e73120

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li S-H, Yu Z-X, Li C-L et al (2003) Lack of huntingtin-associated protein-1 causes neuronal death resembling hypothalamic degeneration in Huntington’s disease. J Neurosci 23:6956–6964

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Guyot M-C, Palfi S, Stutzmann J-M, Maziere M, Hantraye P, Brouillet E (1997) Riluzole protects from motor deficits and striatal degeneration produced by systemic 3-nitropropionic acid intoxication in rats. Neuroscience 81:141–149

    CAS  PubMed  Google Scholar 

  33. Jamwal S, Kumar P (2017) L-theanine, a component of green tea prevents 3-nitropropionic acid (3-NP)-induced striatal toxicity by modulating nitric oxide pathway. Mol Neurobiol 54:2327–2337

    CAS  PubMed  Google Scholar 

  34. Ginés S, Bosch M, Marco S et al (2006) Reduced expression of the TrkB receptor in Huntington’s disease mouse models and in human brain. Eur J Neurosci 23:649–658

    PubMed  Google Scholar 

  35. Kim GS, Cho S, Nelson JW, Zipfel GJ, Han BH (2014) TrkB agonist antibody pretreatment enhances neuronal survival and long-term sensory motor function following hypoxic ischemic injury in neonatal rats. PLoS ONE 9:e88962

    PubMed  PubMed Central  Google Scholar 

  36. Zhang J-c, Yao W, Hashimoto K (2016) Brain-derived neurotrophic factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Curr Neuropharmacol 14:721–731

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang Y, Pardridge WM (2006) Blood–brain barrier targeting of BDNF improves motor function in rats with middle cerebral artery occlusion. Brain Res 1111:227–229

    CAS  PubMed  Google Scholar 

  38. Klevytska AM, Tebbenkamp AT, Savonenko AV, Borchelt DR (2010) Partial depletion of CREB-binding protein reduces life expectancy in a mouse model of Huntington disease. J Neuropathol Exp Neurol 69:396–404

    CAS  PubMed  Google Scholar 

  39. Choi Y-S, Lee B, Cho H-Y et al (2009) CREB is a key regulator of striatal vulnerability in chemical and genetic models of Huntington’s disease. Neurobiol Dis 36:259–268

    CAS  PubMed  PubMed Central  Google Scholar 

  40. DeMarch Z, Giampà C, Patassini S, Bernardi G, Fusco FR (2008) Beneficial effects of rolipram in the R6/2 mouse model of Huntington’s disease. Neurobiol Dis 30:375–387

    CAS  PubMed  Google Scholar 

  41. Puerta E, Hervias I, Barros-Miñones L et al (2010) Sildenafil protects against 3-nitropropionic acid neurotoxicity through the modulation of calpain, CREB, and BDNF. Neurobiol Dis 38:237–245

    CAS  PubMed  Google Scholar 

  42. Mantamadiotis T, Lemberger T, Bleckmann SC et al (2002) Disruption of CREB function in brain leads to neurodegeneration. Nat Genet 31:47

    CAS  PubMed  Google Scholar 

  43. Liu X, Obianyo O, Chan CB et al (2014) Biochemical and biophysical investigation of brain-derived neurotrophic factor mimetic 7,8-dihydroxyflavone in binding and activation of TrkB receptor. J Biol Chem 114:562561

    Google Scholar 

  44. Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75:762–777

    CAS  PubMed  Google Scholar 

  45. Ciarmiello A, Cannella M, Lastoria S, Simonelli M (2006) Brain white-matter volume loss and glucose hypometabolism precede the clinical symptoms of Huntington’s disease. J Nucl Med 47:215

    CAS  PubMed  Google Scholar 

  46. Mochel F, Durant B, Meng X et al (2012) Early alterations of brain cellular energy homeostasis in Huntington disease models. J Biol Chem 287:1361–1370

    CAS  PubMed  Google Scholar 

  47. Milakovic T, Johnson GV (2005) Mitochondrial respiration and ATP production are significantly impaired in striatal cells expressing mutant huntingtin. J Biol Chem 280:30773–30782

    CAS  PubMed  Google Scholar 

  48. Chaturvedi RK, Flint BM (2013) Mitochondrial diseases of the brain. Free Radic Biol Med 63:1–29

    CAS  PubMed  Google Scholar 

  49. Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1:120–129

    CAS  PubMed  Google Scholar 

  50. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787

    CAS  Google Scholar 

  51. Almeida S, Laço M, Cunha-Oliveira T, Oliveira CR, Rego AC (2009) BDNF regulates BIM expression levels in 3-nitropropionic acid-treated cortical neurons. Neurobiol Dis 35:448–456

    CAS  PubMed  Google Scholar 

  52. Kulasekaran G, Ganapasam S (2015) Neuroprotective efficacy of naringin on 3-nitropropionic acid-induced mitochondrial dysfunction through the modulation of Nrf2 signaling pathway in PC12 cells. Mol Cell Biochem 409:199–211

    CAS  PubMed  Google Scholar 

  53. Tsai S-C, Lu C-C, Lee C-Y et al (2012) AKT serine/threonine protein kinase modulates bufalin-triggered intrinsic pathway of apoptosis in CAL 27 human oral cancer cells. Int J Oncol 41:1683–1692

    CAS  PubMed  Google Scholar 

  54. Sassone J, Maraschi A, Sassone F, Silani V, Ciammola A (2013) Defining the role of the Bcl-2 family proteins in Huntington’s disease. Cell Death Dis 4:e772

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang Y, Ona VO, Li M et al (2003) Sequential activation of individual caspases, and of alterations in Bcl-2 proapoptotic signals in a mouse model of Huntington’s disease. J Neurochem 87:1184–1192

    CAS  PubMed  Google Scholar 

  56. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Danial N (2008) BAD: undertaker by night, candyman by day. Oncogene 27:S53–S70

    CAS  PubMed  Google Scholar 

  58. Agrawal R, Tyagi E, Vergnes L, Reue K, Gomez-Pinilla F (2014) Coupling energy homeostasis with a mechanism to support plasticity in brain trauma. Biochim Biophys Acta 1842:535–546

    CAS  PubMed  Google Scholar 

  59. Han X-H, Cheng M-N, Chen L et al (2014) 7,8-Dihydroxyflavone protects PC12 cells against 6-hydroxydopamine-induced cell death through modulating PI3K/Akt and JNK pathways. Neurosci Lett 581:85–88

    CAS  PubMed  Google Scholar 

  60. Guan J, Zhang X, Sun W, Qi L, Wu J, Qin Z (2015) DRAM1 regulates apoptosis through increasing protein levels and lysosomal localization of BAX. Cell Death Dis 6:e1624

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research fellowship was supported by the National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, under the aegis of Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India. The authors acknowledge NMHS Grant (GBPI/NMHS-2017-18/HSF-02), Ministry of Environment Forest and Climate Change, Government of India for providing financial support to carry out the research work. The authors also acknowledge DST-SAIF, All India Institute of Medical Sciences (AIIMS) New Delhi-India for helping with the tissue preparation and analysis of brain TEM samples.

Author information

Authors and Affiliations

Authors

Contributions

V.G.M. Naidu provided overall guidance from designing the experiment, model establishment, and manuscript writing. Sahabuddin Ahmed contributed to the in vitro and in vivo experimental design, model establishment, Immunohistochemistry and manuscript writing. Mohit Kwatra contributed for in vitro and in vivo experiments, manuscript writing, western blot estimation and electron microscopy. Basveshwar Gawali and Samir Ranjan Panda have done the animal behavior assessments and histopathology.

Corresponding author

Correspondence to V. G. M. Naidu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 241 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S., Kwatra, M., Gawali, B. et al. Potential role of TrkB agonist in neuronal survival by promoting CREB/BDNF and PI3K/Akt signaling in vitro and in vivo model of 3-nitropropionic acid (3-NP)-induced neuronal death. Apoptosis 26, 52–70 (2021). https://doi.org/10.1007/s10495-020-01645-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-020-01645-x

Keywords

Navigation