Skip to main content
Log in

On the Microstructural Strengthening and Toughening of Heat-Affected Zone in a Low-Carbon High-Strength Cu-Bearing Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In this article, the influence of simulated thermal cycles for the heat-affected zone (HAZ) on the microstructural evolution and mechanical properties in a low-carbon high-strength Cu-bearing steel was investigated by microstructural characterization and mechanical tests. The results showed that the microstructure of the coarse-grained heat-affected zone (CGHAZ) and the fine-grained heat-affected zone (FGHAZ) was mainly comprised of lath martensite, and a mixed microstructure consisting of intercritical ferrite, tempered martensite and retained austenite occurred in the intercritically heat-affected zone (ICHAZ) and the subcritically heat-affected zone (SCHAZ). Also, 8–11% retained austenite and more or less Cu precipitates were observed in the simulated HAZs except for CGHAZ. Charpy impact test indicated that the optimum toughness was obtained in FGHAZ, which was not only associated with grain refinement, but also correlated with deformation-induced transformation of the retained austenite, variant configuration as interleaved type and a relatively weak variant selection. The toughness of ICHAZ and SCHAZ exhibited a slight downtrend due to the presence of Cu precipitates. The CGHAZ has the lowest toughness in the simulated HAZs, which was attributed to grain coarsening and heavy variant selection. In addition, the contribution of Cu precipitates to yield strength in simulated HAZs was estimated based on Russell–Brown model. It demonstrated an inverse variation trend to toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Pamnani, T. Jayakumar, M. Vasudevan, T. Sakthivel, J. Manuf. Process. 21, 75 (2016)

    Article  Google Scholar 

  2. L.D.J. Jorge, V.S. Cândido, A.C.R.D. Silva, F.D.C. Garcia Filho, A.C. Pereira, F.S.D. Luz, S.N. Monteiro, J. Mater. Res. Technol. 7, 598 (2018)

    Article  CAS  Google Scholar 

  3. A. Lambert-Perlade, A.F. Gourgues, J. Besson, T. Sturel, A. Pineau, Metall. Mater. Trans. A 35, 1039 (2004)

    Article  Google Scholar 

  4. Z.B. Jiao, J.H. Luan, M.K. Miller, C.T. Liu, Acta Mater. 97, 58 (2015)

    Article  CAS  Google Scholar 

  5. Y. Wen, Y. Li, A. Hirata, Y. Zhang, T. Fujita, T. Furuhara, C. Liu, A. Chiba, M.W. Chen, Acta Mater. 61, 7726 (2013)

    Article  CAS  Google Scholar 

  6. K. Osamura, H. Okuda, S. Ochiai, M. Takashima, K. Asano, M. Furusaka, K. Kishida, F. Kurosawa, ISIJ Int. 34, 359 (1994)

    Article  CAS  Google Scholar 

  7. K.C. Russell, L. Brown, Acta Mater. 20, 969 (1972)

    Article  CAS  Google Scholar 

  8. K. Nakashima, Y. Futamura, T. Tsuchiyama, S. Takaki, ISIJ Int. 42, 1541 (2002)

    Article  CAS  Google Scholar 

  9. X.H. Xi, J.L. Wang, L.Q. Chen, Z.D. Wang, Metall. Mater. Trans. A 50, 5627 (2019)

    Article  CAS  Google Scholar 

  10. K. Li, J.G. Shan, C.X. Wang, Z.L. Tian, Mater. Sci. Eng. A 681, 41 (2017)

    Article  CAS  Google Scholar 

  11. Y. You, C.J. Shang, W.J. Nie, S. Subramanian, Mater. Sci. Eng. A 558, 692 (2012)

    Article  CAS  Google Scholar 

  12. S.G. Lee, D.H. Lee, S.S. Sohn, W.G. Kim, K.K. Um, K.S. Kim, S. Lee, Mater. Sci. Eng. A 697, 55 (2017)

    Article  CAS  Google Scholar 

  13. X.D. Li, X.P. Ma, S.V. Subramanian, C.J. Shang, R.D.K. Misra, Mater. Sci. Eng. A 616, 141 (2014)

    Article  CAS  Google Scholar 

  14. S. Moeinifar, A.H. Kokabi, H.R.M. Hosseini, J. Mater. Process. Technol. 211, 368 (2011)

    Article  CAS  Google Scholar 

  15. X.L. Wang, X.M. Wang, C.J. Shang, R.D.K. Misra, Mater. Sci. Eng. A 649, 282 (2016)

    Article  CAS  Google Scholar 

  16. S. Chen, C. Wang, L. Shan, Y. Li, X. Zhao, W. Xu, Metall. Mater. Trans. A 50, 4037 (2019)

    Article  CAS  Google Scholar 

  17. Z.B. Jiao, J.H. Luan, W. Guo, J.D. Poplawsky, C.T. Liu, Acta Mater. 120, 216 (2016)

    Article  CAS  Google Scholar 

  18. X.H. Yu, J.L. Caron, S.S. Babu, J.C. Lippold, D. Isheim, D.N. Seidman, Metall. Mater. Trans. A 42, 3669 (2011)

    Article  CAS  Google Scholar 

  19. X.H. Xi, J.L. Wang, L.Q. Chen, Z.D. Wang, Met. Mater. Int. 25, 1477 (2019)

    Article  CAS  Google Scholar 

  20. H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, Acta Mater. 54, 1279 (2006)

    Article  CAS  Google Scholar 

  21. N. Takayama, G. Miyamoto, T. Furuhara, Acta Mater. 60, 2387 (2012)

    Article  CAS  Google Scholar 

  22. Z. Guo, C.S. Lee, J.W. Morris, Acta Mater. 52, 5511 (2004)

    Article  CAS  Google Scholar 

  23. A. Deschamps, M. Militzer, ISIJ Int. 41, 196 (2001)

    Article  CAS  Google Scholar 

  24. P. Mohseni, J.K. Solberg, M. Karlsen, O.M. Akselsen, E. Østby, Metall. Mater. Trans. A 45, 384 (2013)

    Article  Google Scholar 

  25. X. Wang, Z. Wang, X. Ma, S. Subramanian, Z. Xie, C. Shang, X. Li, Mater. Charact. 140, 312 (2018)

    Article  CAS  Google Scholar 

  26. Y. You, C.J. Shang, L. Chen, S. Subramanian, Mater. Des. 43, 485 (2013)

    Article  CAS  Google Scholar 

  27. R. Song, D. Ponge, D. Raabe, J.G. Speer, D.K. Matlock, Mater. Sci. Eng. A 441, 1 (2006)

    Article  Google Scholar 

  28. G. Gao, H. Zhang, X. Gui, P. Luo, Z. Tan, B. Bai, Acta Mater. 76, 425 (2014)

    Article  CAS  Google Scholar 

  29. L. Skoufari-Themistou, D.N. Crowther, B. Mintz, Mater. Sci. Technol. 15, 1069 (2013)

    Article  Google Scholar 

  30. I. Holzer, E. Kozeschnik, Mater. Sci. Eng. A 527, 3546 (2010)

    Article  Google Scholar 

  31. X.H. Yu, J.L. Caron, S.S. Babu, J.C. Lippold, D. Isheim, D.N. Seidman, Acta Mater. 58, 5596 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Key Research and Development Program of China (13th Five-Year Plan) with the Contract No. 2016YFB0300601 and the National High Technology Research and Development Program of China (No. 2012AA03A508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqing Chen.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, X., Wang, J., Chen, L. et al. On the Microstructural Strengthening and Toughening of Heat-Affected Zone in a Low-Carbon High-Strength Cu-Bearing Steel. Acta Metall. Sin. (Engl. Lett.) 34, 617–627 (2021). https://doi.org/10.1007/s40195-020-01159-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01159-0

Keywords

Navigation