Skip to main content

Advertisement

Log in

Global dynamics of a diffusive viral infection model with general incidence function and distributed delays

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

The distributed delay was firstly proposed by Volterra in the 1930s since it is more realistic than discrete delay and has been introduced in many dynamical systems. In this paper, we establish a diffusive viral infection model with general incidence function and distributed delays subject to the homogeneous Neumann boundary conditions. Firstly, we prove the existence, uniqueness, positivity and boundedness of solutions of the model. Then, by using the linearization method and constructing appropriate Lyapunov functionals, we show that the global dynamics of the model is determined by the reproductive numbers for viral infection \(\mathcal {R}_{0}\), which implies that the global stability of the model precludes the existence of complex dynamical behaviors such as Hopf bifurcation and patter formation. Furthermore, an example is presented and numerical simulations are also carried out to illustrate the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nowak, M.A., Bangham, C.R.M.: Population dynamics of immune responses to persistent viruses. Science 272, 74–79 (1996)

    Article  Google Scholar 

  2. Nowak, M.A., Bonhoeffer, S., Hill, A.M., Boehme, R., Thomas, H.C., McDade, H.: Viral dynamics in hepatitis B virus infection. Proc. Natl. Acad. Sci. 93, 4398–4402 (1996)

    Article  Google Scholar 

  3. Korobeinikov, A.: Global properties of basic virus dynamics models. Bull. Math. Biol. 66, 879–883 (2004)

    Article  MathSciNet  Google Scholar 

  4. Britton, N.F.: Essential Mathematical Biology. Springer, London (2003)

    Book  Google Scholar 

  5. Wang, K., Wang, W., Song, S.: Dynamics of a HBV model with diffusion and delay. J. Theor. Biol. 253, 36–44 (2008)

    Article  MathSciNet  Google Scholar 

  6. Gourley, S.A., So, J.W.H.: Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain. J. Math. Biol. 44, 49–78 (2002)

    Article  MathSciNet  Google Scholar 

  7. Xu, R., Ma, Z.: An HBV model with diffusion and time delay. J. Theor. Biol. 257(3), 499–509 (2009)

    Article  MathSciNet  Google Scholar 

  8. Gan, Q., Xu, R., Yang, P., Wu, Z.: Travelling waves of a hepatitis B virus infection model with spatial diffusion and time delay. IMA J. Appl. Math. 75(3), 392–417 (2010)

    Article  MathSciNet  Google Scholar 

  9. Wang, J., Yang, J., Kuniya, T.: Dynamics of a PDE viral infection model incorporating cell-to-cell transmission. J. Math. Anal. Appl. 444(2), 1542–1564 (2016)

    Article  MathSciNet  Google Scholar 

  10. Wang, W., Ma, W., Lai, X.: Repulsion effect on superinfecting virions by infected cells for virus infection dynamic model with absorption effect and chemotaxis. Nonlinear Anal. RWA 33, 253–283 (2017)

    Article  MathSciNet  Google Scholar 

  11. Xu, Z., Ai, C.: A spatial echinococcosis transmission model with time delays: stability and traveling waves. Int. J. Biomath. 10(6), 1750081 (2017)

    Article  MathSciNet  Google Scholar 

  12. Xu, Z., Xu, Y., Huang, Y.: Stability and traveling waves of a vaccination model with nonlinear incidence. Comput. Math. Appl. 75(2), 561–581 (2018)

    Article  MathSciNet  Google Scholar 

  13. Korobeinikov, A.: Global asymptotic properties of virus dynamics models with dose-dependent parasite reproduction and virulence and nonlinear incidence rate. Math. Med. Biol. 26, 225–239 (2009)

    Article  MathSciNet  Google Scholar 

  14. Huang, G., Takeuchi, Y., Ma, W.: Lyapunov functionals for delay differential equations model of viral infections. SIAM J. Appl. Math. 70, 2693–2708 (2010)

    Article  MathSciNet  Google Scholar 

  15. McCluskey, C.C., Yang, Y.: Global stability of a diffusive virus dynamics model with general incidence function and time delay. Nonlinear Anal. RWA 25, 64–78 (2015)

    Article  MathSciNet  Google Scholar 

  16. Hattaf, K., Yousfi, N.: A generalized HBV model with diffusion and two delays. Comput. Math. Appl. 69, 31–40 (2015)

    Article  MathSciNet  Google Scholar 

  17. Miao, H., Teng, Z., Abdurahman, X., Li, Z.: Global stability of a diffusive and delayed virus infection model with general incidence function and adaptive immune response. Comput. Appl. Math. 37(3), 3780–3805 (2018)

    Article  MathSciNet  Google Scholar 

  18. Zhou, J., Yang, Y., Zhang, T.: Global dynamics of a reaction–diffusion waterborne pathogen model with general incidence rate. J. Math. Anal. Appl. 466(1), 835–859 (2018)

    Article  MathSciNet  Google Scholar 

  19. Yang, Y., Dong, Y., Takeuchi, Y.: Global dynamics of a latent HIV infection model with general incidence function and multiple delays. Discrete. Contin. Dyn. Syst. B. 24(2), 783–800 (2019)

    Article  MathSciNet  Google Scholar 

  20. Perelson, A., Neumann, A., Markowitz, M., Leonard, J., Ho, D.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–1586 (1996)

    Article  Google Scholar 

  21. Lin, J., Xu, R., Tian, X.: Threshold dynamics of an HIV-1 virus model with both virus-to-cell and cell-to-cell transmissions, intracellular delay, and humoral immunity. Appl. Math. Comput. 315, 516–530 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Elaiw, A.M., Almatrafi, A.A., Hobiny, A.D.: Effect of antibodies on pathogen dynamics with delays and two routes of infection. AIP Adv. 8(6), 065104 (2018)

    Article  Google Scholar 

  23. Wu, C., Weng, P.: Stability analysis of a SIS model with stage structured and distributed maturation delay. Nonlinear Anal. RWA 71(12), 892–901 (2009)

    Article  Google Scholar 

  24. Nakata, Y.: Global dynamics of a cell mediated immunity in viral infection models with distributed delays. J. Math. Anal. Appl. 375, 14–27 (2011)

    Article  MathSciNet  Google Scholar 

  25. Zhao, L., Wang, Z., Zhang, L.: Threshold dynamics of a time periodic and two-group epidemic model with distributed delay. Math. Biosci. Eng. 14(5–6), 1535–1563 (2017)

    Article  MathSciNet  Google Scholar 

  26. Li, M.Y., Shu, H.: Impact of intracellular delays and target-cell dynamics on in vivo viral infections. SIAM J. Appl. Math. 70, 2434–2448 (2010)

    Article  MathSciNet  Google Scholar 

  27. Xu, R.: Global dynamics of an HIV-1 infection model with distributed intracellular delays. Comput. Math. Appl. 61(9), 2799–2805 (2011)

    Article  MathSciNet  Google Scholar 

  28. Wang, J., Liu, S.: The stability analysis of a general viral infection model with distributed delays and multi-staged infected progression. Commun. Nonlinear Sci. Numer. Simul. 20(1), 263–272 (2015)

    Article  MathSciNet  Google Scholar 

  29. Wang, J., Guo, M., Liu, X., Zhao, Z.: Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay. Appl. Math. comput. 291, 149–161 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Elaiw, A.M., AlShamrani, N.H., Hattaf, K.: Dynamical behaviors of a general humoral immunity viral infection model with distributed invasion and production. Int. J. Biomath. 10(3), 1750035 (2017)

    Article  MathSciNet  Google Scholar 

  31. Xu, R.: Global stability of an HIV-1 infection model with saturation infection and intracellular delay. J. Math. Anal. Appl. 375, 75–81 (2011)

    Article  MathSciNet  Google Scholar 

  32. Wang, X., Tao, Y., Song, X.: Global stability of a virus dynamics model with Beddington-DeAngelis incidence rate and CTL immune response. Nonlinear Dyn. 66, 825–830 (2011)

    Article  MathSciNet  Google Scholar 

  33. Zhou, X., Cui, J.: Global stability of the viral dynamics with Crowley–Martin functional response. Bull. Korean Math. Soc. 48(3), 555–574 (2011)

    Article  MathSciNet  Google Scholar 

  34. Perelson, A.S., Nelson, P.W.: Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41, 3–44 (1999)

    Article  MathSciNet  Google Scholar 

  35. Pao, C.V.: Dynamics of nonlinear parabolic systems with time delays. J. Math. Anal. Appl. 198, 751–779 (1996)

    Article  MathSciNet  Google Scholar 

  36. Zhang, S., Xu, R.: Global dynamics of an HBV model with spatial diffusion and antibody response. Commun. Math. Biol. Neurosci. Article ID 3 (2016)

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (No. 11761038, No. 11761039) and Science and Technology Project of Department of Education of Jiangxi Province (No. GJJ180583).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosong Tang.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Tang, X., Wang, Z. et al. Global dynamics of a diffusive viral infection model with general incidence function and distributed delays. Ricerche mat 69, 683–702 (2020). https://doi.org/10.1007/s11587-020-00481-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-020-00481-0

Keywords

Mathematics Subject Classification

Navigation