Skip to main content
Log in

Bifurcation dynamics of a plant-pest-natural enemy system in polluted environment incorporating gestation delays

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In this study, a three species plant-pest-natural enemy compartmental model incorporating gestation delays for both pests and natural enemies in a polluted environment is proposed. The boundedness and positivity properties of the model are established. Equilibria and their stability analysis are carried out for all possible steady states. The existence of Hopf bifurcation in the system is analyzed. It is established that the natural enemy free steady state \(E_2\) is stable for specific threshold parameter values \(\tau _1\in (0,\tau _{10}^+)\), i.e., gestation delay for pest species belongs to zero and it’s own critical value, \(\tau _{10}^+\) and the coexisting steady state \(E^*\) is stable for specific threshold parameter values \(\tau _1\in (0,\tau _{10}^+)\) and \(\tau _2\in (0,\tau _{20}^+)\), i.e., gestation delay for pest species belongs to zero and it’s own critical value, \(\tau _{10}^+\) and gestation delay for natural enemies belongs to zero and it’s own critical value, \(\tau _{20}^+\). If both gestation delays for pest and natural enemies, i.e., \(\tau _1, \tau _2\) respectively cross their threshold parameter values, i.e., \(\tau _1>\tau _{10}^{+},\tau _2>\tau _{20}^{+}\), then the system perceived oscillating behavior and Hopf bifurcation occurs in the system. The sensitivity analysis of the system at interior steady state is presented and the sensitive indices of the variables are identified. Finally, simulations are performed to support our analytic results with a distinct set of parametric values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Thomas, M.B., Willis, A.J.: Biocontrol-risky but necessarys. Trends Ecol. Evol. 13, 325–329 (1998)

    Article  Google Scholar 

  2. Parrella, M.P., Heinz, K.M., Nunney, L.: Biological control through augmentative releases of natural enemies: a strategy whose time has come. Am. Entomol. 38(3), 172–179 (1992)

    Article  Google Scholar 

  3. Kishimba, M., Henry, L., Mwevura, H., Mmochi, A., Mihale, M., Hellar, H.: The status of pesticide pollution in Tanzania. Talanta 64(1), 48–53 (2004)

    Article  Google Scholar 

  4. Weaver, R.D., Evans, D.J., Luloff, A.E.: Pesticide use in tomato production: consumer concerns and willingness-to-pay. Agribusiness 8(2), 131–142 (1992)

    Article  Google Scholar 

  5. Jain, P.C., Bhargava, M.C.: Entomology: Novel Approaches. New India Publishing Agency, New Delhi (2007)

    Google Scholar 

  6. Kar, T.K., Ghosh, B.: Sustainability and optimal control of an exploited prey predator system through provision of alternative food to predator. BioSystems 109, 220–232 (2012)

    Article  Google Scholar 

  7. Ghosh, B., Grogrnard, F., Mailleret, L.: Natural enemies deployment in patchy environments for augmentative biological control. Appl. Math. Comput. 266, 982–999 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Kumar, V., Dhar, J., Singh, H., Bhatti, H.S.: Plant pest natural enemy dynamics with disease in pest and gestation delay for natural enemy. J. Math. Comput. Sci. 5(7), 948–965 (2017)

    MATH  Google Scholar 

  9. Kumar, V., Dhar, J., Bhatti, H.S.: Stability and Hopf-bifurcation dynamics of a food chain system: plant-pest-natural enemy with dual gestation delay as a biological control strategy 4(2), 881–889 (2018)

  10. Lian, F., Xu, Y.: Hopf bifurcation analysis of a predator–prey system with Holling type IV functional response and time delay. Appl. Math. Comput. 215(4), 1484–1495 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Liu, X., Han, M.: Chaos and Hopf bifurcation analysis for a two species predator–prey system with prey refuge and diffusion. Nonlinear Anal. Real World Appl. 12(2), 1047–1061 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Singh, H., Dhar, J., Bhatti, H.S.: Dynamics of a prey generalized predator system with disease in prey and gestation delay for predator. Model. Earth Syst. Environ. 2(2), 52 (2016)

    Article  Google Scholar 

  13. Song, Y., Wei, J.: Local Hopf bifurcation and global periodic solutions in a delayed predator–prey system. J. Math. Anal. Appl. 301(1), 1–21 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhao, H., Lin, Y.: Hopf bifurcation in a partial dependent predator–prey system with delay. Chaos Solitons Fractals 42(2), 896–900 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Faria, T.: Stability and bifurcation for a delayed predator–prey model and the effect of diffusion. J. Math. Anal. Appl. 254(2), 433–463 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, K., Wei, J.: Stability and Hopf bifurcation analysis of a prey–predator system with two delays. Chaos Solitons Fractals 42(5), 2606–2613 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Song, Y., Peng, Y., Wei, J.: Bifurcations for a predator–prey system with two delays. J. Math. Anal. Appl. 337(1), 466–479 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xu, C., Liao, M., He, X.: Stability and Hopf bifurcation analysis for a Lotka–Volterra predator–prey model with two delays. Int. J. Appl. Math. Comput. Sci. 21(1), 97–107 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Aiello, W., Freedman, H.: A time-delay model of single-species growth with stagestructure. Math. Biosci. 101(2), 139–153 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Magniusson, k: Destabilizing effect of cannibalism on a structured predator–prey system. Math. Biosci. 155(1), 61–75 (1999)

    Article  Google Scholar 

  21. Wang, W., Chen, L.: A predator–prey system with stage-structure for predator. Comput. Math. Appl. 33(8), 83–91 (1997)

    Article  MathSciNet  Google Scholar 

  22. Xu, R., Chaplain, M., Davidson, F.: Global stability of a Lotka–Volterra type predator–prey model with stage-structure and time delay. Appl. Math. Comput. 159(3), 863–880 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Zhang, X., Chen, L., Neumann, A.: The stage-structured predator–prey model and optimal harvesting policy. Math. Biosci. 168(2), 201–210 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Alakes, M., Rita, P., Shariful, A.: A ratio-dependent predator–prey model with strong allee effect in the prey and an alternative food source for the predator. Int. J. Res. Eng. Technol. (2016)

  25. Hu, H., Huang, L.: Stability and Hopf bifurcation in a delayed predator–prey system with stage-structure for prey. Nonlinear Anal. Real World Appl. 11(4), 2757–2769 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, C., Zhao, M., Zhao, L.: Permanence of periodic predator–prey system with two predators and stage-structure for prey. Nonlinear Anal. Real World Appl. 11(1), 503–514 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, H., Jiao, J., Chen, J.: Pest management through continuous and impulsive control strategies. Biosystems 90(2), 350–361 (2007)

    Article  Google Scholar 

  28. Zhang, J., Jin, Z., Yan, J., Sun, G.: Stability and Hopf bifurcation in a delayed competition system. Nonlinear Anal. Theory Methods Appl. 70(2), 658–670 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shigui, R.: Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator–prey systems with discrete delays. Q. Appl. Math. 59(1), 159–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would wish to thank the referee and reviewer for their valuable advice on improving the presentation of the paper. Also, authors would want to thank, I. K. Gujral Punjab Technical University, Jalandhar-Kapurthala-144601, Punjab, India for providing the opportunity to pursue the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. There is no funding source available and this study is involved human participants only.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Dhar, J. & Bhatti, H.S. Bifurcation dynamics of a plant-pest-natural enemy system in polluted environment incorporating gestation delays. Ricerche mat 69, 533–551 (2020). https://doi.org/10.1007/s11587-019-00455-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-019-00455-x

Keywords

Mathematics Subject Classification

Navigation