Skip to main content
Log in

On the p(X)-Kirchhoff-Type Equation Involving the p(X)-Biharmonic Operator via the Genus Theory

  • Published:
Ukrainian Mathematical Journal Aims and scope

The paper deals with the existence and multiplicity of nontrivial weak solutions for the p(x)-Kirchhofftype problem

$$ {\displaystyle \begin{array}{c}-M\left(\underset{\Omega}{\int}\frac{1}{p(x)}{\left|\Delta u\right|}^{p(x)} dx\right){\Delta}_{p(x)}^2u=f\left(x,u\right)\kern0.6em \mathrm{in}\kern0.48em \Omega, \\ {}u=\Delta u=0\kern0.48em \mathrm{on}\kern0.48em \mathrm{\partial \Omega }.\end{array}} $$

By using the variational approach and the Krasnosel’skii genus theory, we prove the existence and multiplicity of solutions for the p(x)-Kirchhoff-type equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Chen, S. Levine, and M. Rao, “Variable exponent, linear growth functionals in image processing,” SIAM J. Appl. Math., 66, No. 4, 1383–1406 (2006).

    Article  MathSciNet  Google Scholar 

  2. B. Cheng, X. Wu, and J. Liu, “Multiplicity of nontrivial solutions for Kirchhoff-type problems,” Bound. Value Probl., 2010, Article ID 268946 (2010).

    Google Scholar 

  3. M. Avci, B. Cekic, and R. A. Mashiyev, “Existence and multiplicity of the solutions of the p(x)-Kirchhoff-type equation via genus theory,” Math. Meth. Appl. Sci., 34, 1751–1759 (2011).

    Article  MathSciNet  Google Scholar 

  4. J. J. Sun and C. L. Tang, “Existence and multiplicity of solutions for Kirchhoff-type equations,” Nonlin. Anal., 74, 1212–1222 (2011).

    Article  MathSciNet  Google Scholar 

  5. K. C. Chang, Critical Point Theory and Applications, Shanghai Science and Technology Press, Shanghai (1986).

    MATH  Google Scholar 

  6. M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, MacMillan, New York (1964).

    Google Scholar 

  7. A. Zang and Y. Fu, “Interpolation inequalities for derivatives in variable exponent Lebesgue–Sobolev spaces,” Nonlin. Anal., 69, 3629–3636 (2008).

    Article  MathSciNet  Google Scholar 

  8. F. Júlio, S. A. Corrêa, and G. M. Figueiredo, “On an elliptic equation of p-Kirchhoff type via variational methods,” Bull. Austral. Math. Soc., 74, 263–277 (2006).

    Article  MathSciNet  Google Scholar 

  9. X. L. Fan and D. Zhao, “On the spaces Lp(x)(Ω) and Wm,p(x)(Ω),” J. Math. Anal. Appl., 263, 424–446 (2001).

    Article  MathSciNet  Google Scholar 

  10. M. Milhailescu, “Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplacian operator,” Nonlin. Anal., 67, 1419–1425 (2007).

    Article  Google Scholar 

  11. D. C. Clark and D. Gilbarg, “A variant of the Ljusternik–Schnirelman theory,” Indiana Univ. Math. J., 22, No. 1, 65–74 (1972).

    Article  MathSciNet  Google Scholar 

  12. A. R. El Amrouss, F. Moradi, and M. Moussaoui, “Existence of solutions for fourth-order PDEs with variable exponents,” Electron. J. Different. Equat., 2009, No. 153, 1–13 (2009).

    MathSciNet  MATH  Google Scholar 

  13. X. L. Fan and X. Fan, “A Knobloch-type result for p(x)-Laplacian systems,” J. Math. Appl., 282, 453–464 (2003).

    MathSciNet  MATH  Google Scholar 

  14. A. R. El Amrouss and A. Ourraoui, “Existence of solutions for a boundary problem involving p(x)-biharmonic operator,” Bol. Soc. Parana. Mat. (3), (3)31, No. 1, 179–192 (2013).

  15. J. H. Yao, “Solution for Neumann boundary problems involving the p(x)-Laplacian operators,” Nonlin. Anal., 68, 1271–1283 (2008).

    Article  Google Scholar 

  16. G. Kirchhoff, Mechanik, Teubner, Leipzig (1883).

    MATH  Google Scholar 

  17. N. T. Chung, “Multiplicity results for a class of p(x)-Kirchhoff type equations with combined nonlinearities,” Electron. J. Qual. Theory Differ. Equat., 42, 1–13 (2012).

  18. G. A. Afrouzi and M. Mirzapour, “Eigenvalue problems for p(x)-Kirchhoff type equations,” Electron. J. Different. Equat., 2013, No. 253 (2013).

  19. V. V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory,” Izv. Akad. Nauk SSSR, Ser. Mat., 50, No. 4, 675–710 (1986).

    MathSciNet  Google Scholar 

  20. E. Acerbi and G. Mingione, “Gradient estimate for the p(x)-Laplacian system,” J. Reine Angew. Math., 584, 117–148 (2005).

    Article  MathSciNet  Google Scholar 

  21. O. Kovã˜cik and J. Rãkosnik, “On spaces Lp(x) and Wk,p(x),” Czechoslovak Math. J., 41(116), 592–618 (1991).

    Google Scholar 

  22. X. L. Fan, J. S. Shen, and D. Zhao, “Sobolev embedding theorems for spaces Wk,p(x),” J. Math. Anal. Appl., 262, 749–760 (2001).

    Article  MathSciNet  Google Scholar 

  23. A. Ambrosetti and A. Malchiodi, “Nonlinear analysis and semilinear elliptic problems,” Cambridge Stud. Adv. Math., 14 (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Taarabti.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 72, No. 6, pp. 842–851, June, 2020. Ukrainian DOI: 10.37863/umzh.v72i6.6019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taarabti, S., El Allali, Z. & Haddouch, K.B. On the p(X)-Kirchhoff-Type Equation Involving the p(X)-Biharmonic Operator via the Genus Theory. Ukr Math J 72, 978–989 (2020). https://doi.org/10.1007/s11253-020-01836-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-020-01836-4

Navigation