Skip to main content
Log in

Paradoxical Filler Size Effect on Composite Wear: Filler–Matrix Interaction and Its Tribochemical Consequences

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The addition of 0.2–5% nanoscale (40–80 nm) α-phase or microscale (40 μm) γ-phase Al2O3 particles in PTFE effectively reduce the matrix wear rate by 99.99%, whereas microscale (> 0.5 μm) α-Al2O3 or nanoscale (40–80 nm) γ-Al2O3 only reduce PTFE wear by ~ 90% under identical loading, dispersion and testing conditions. This paradoxical material system best illustrates the complexity of tribology and the importance of filler–matrix interactions at small scales. We studied the independent effect of the Al2O3/PTFE interface area and alumina structure by systematically varying the particle size over two orders of magnitude for both α- and γ-Al2O3/PTFE composites. Detailed characterizations of filler size, surface area and tribofilm’s chemical composition were conducted. The results found: (1) DLS median particle sizes conformed reasonably to vendor reported values and percentages of microscale filler aggregates correlated weakly with wear rates, (2) electron microscopy of the as-worn composite surface suggested a strong relation between the characteristic size of ‘unreinforced’ polymer domain and composite wear rate, (3) third bodies (i.e., transfer films, debris) played an important role in counterface abrasion, (4) wear rate correlated strongly with filler’s specific surface area and ultralow wear was only maintained ~ 0.3–10 m2/g nominal specific filler–matrix area values, (5) ultralow wear coincided with perfluorinated carboxylic salt rich tribofilms which supported a previously proposed wear reduction mechanism that mechanochemically degraded PTFE chelate with alumina and cause crosslinked and wear-resistant tribofilms, (6) tribofilm Al-F bond signal increased with filler surface area and high wear coincided with excessive tribofilm Al-F signal for γ-Al2O3/PTFE systems. Based on these results and literature hypothesis, we proposed that (1) the 1 μm α-Al2O3 provided the least filler–matrix interface and largest unreinforced polymer domain in PTFE, which lead to the least crosslinked and compartmentalized tribofilms; (2) in γ-alumina filled composites, Al-F bond forms as a product of mechanochemically degraded PTFE but also blocks chelation between the degraded PTFE and alumina fillers, (3) the 20 nm γ-Al2O3 provided the most filler–matrix interface which leads to excessive aluminum fluoride that blocked the filler–matrix chelation, prevented the tribofilm crosslinking and lead to high wear rates. This hypothesis was additionally supported by small molecule experiments in this study. However, this study provides no direct insight into how sensitive the filler–matrix tribochemical interaction is to filler phase or aggregate strength (strong, weak or fully dense).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Interestingly, our results suggested the measured oxygen content on unworn composite surface contains surface absorbed hydroxyl groups from environmental moisture which could also be altered due to wear in some cases.

References

  1. Myshkin, N., Kovalev, A.: Adhesion and surface forces in polymer tribology—a review. Friction 6, 143–155 (2018)

    Google Scholar 

  2. Scharf, T.W., Prasad, S.V.: Solid lubricants: a review. J. Mater. Sci. 48, 511–531 (2012)

    Google Scholar 

  3. Schadler, L., Brinson, L.C., Sawyer, W.: Polymer nanocomposites: a small part of the story. Jom 59, 53–60 (2007)

    CAS  Google Scholar 

  4. Burris, D.L., Zhao, S., Duncan, R., Lowitz, J., Perry, S.S., Schadler, L.S., et al.: A route to wear resistant PTFE via trace loadings of functionalized nanofillers. Wear 267, 653–660 (2009)

    CAS  Google Scholar 

  5. Anthony, K.: Interface effects and the work of fracture of a fibrous composite. Proc. R. Soc. London A 319, 95–116 (1970)

    Google Scholar 

  6. Cotterell, B., Chia, J.Y.H., Hbaieb, K.: Fracture mechanisms and fracture toughness in semicrystalline polymer nanocomposites. Eng. Fract. Mech. 74, 1054–1078 (2007)

    Google Scholar 

  7. Reynaud, E., Jouen, T., Gauthier, C., Vigier, G., Varlet, J.: Nanofillers in polymeric matrix: a study on silica reinforced PA6. Polymer 42, 8759–8768 (2001)

    CAS  Google Scholar 

  8. Singh, R.P., Zhang, M., Chan, D.: Toughening of a brittle thermosetting polymer: effects of reinforcement particle size and volume fraction. J. Mater. Sci. 37, 781–788 (2002)

    CAS  Google Scholar 

  9. Wichmann, M.H.G., Schulte, K., Wagner, H.D.: On nanocomposite toughness. Compos. Sci. Technol. 68, 329–331 (2008)

    CAS  Google Scholar 

  10. Michler, G.H., Adhikari, R., Henning, S.: Toughness enhancement of nanostructured amorphous and semicrystalline polymers. Macromol. Symp. 214, 47–72 (2004)

    CAS  Google Scholar 

  11. Marega, C., Marigo, A., Causin, V., Kapeliouchko, V., Di Nicolò, E., Sanguineti, A.: Relationship between the size of the latex beads and the solid−solid phase transitions in emulsion polymerized poly (tetrafluoroethylene). Macromolecules 37, 5630–5637 (2004)

    CAS  Google Scholar 

  12. Xiao, Z., Li, Y., Ma, D., Schadler, L.S., Akpalu, Y.A.: Probing the use of small-angle light scattering for characterizing structure of titanium dioxide/low-density polyethylene nanocomposites. J. Polym. Sci. B 44, 1084–1095 (2006)

    CAS  Google Scholar 

  13. Dasari, A., Yu, Z.-Z., Mai, Y.-W.: Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites. Mater. Sci. Eng. R 63, 31–80 (2009)

    Google Scholar 

  14. Qian, D., Dickey, E.C., Andrews, R., Rantell, T.: Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76, 2868–2870 (2000)

    CAS  Google Scholar 

  15. Thostenson, E.T., Ren, Z., Chou, T.-W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)

    CAS  Google Scholar 

  16. Thostenson, E.T., Li, C., Chou, T.-W.: Nanocomposites in context. Compos. Sci. Technol. 65, 491–516 (2005)

    CAS  Google Scholar 

  17. Burris, D.L., Boesl, B., Bourne, G.R., Sawyer, W.G.: Polymeric nanocomposites for tribological applications. Macromol. Mater. Eng. 292, 387–402 (2007)

    CAS  Google Scholar 

  18. Gersappe, D.: Molecular mechanisms of failure in polymer nanocomposites. Phys. Rev. Lett. 89, 058301 (2002)

    Google Scholar 

  19. Jordan, J., Jacob, K.I., Tannenbaum, R., Sharaf, M.A., Jasiuk, I.: Experimental trends in polymer nanocomposites—a review. Mater. Sci. Eng. A 393, 1–11 (2005)

    Google Scholar 

  20. Tanaka, K., Kawakami, S.: Effect of various fillers on the friction and wear of polytetrafluoroethylene-based composites. Wear 79, 221–234 (1982)

    CAS  Google Scholar 

  21. Makowiec, M.E., Blanchet, T.A.: Improved wear resistance of nanotube- and other carbon-filled PTFE composites. Wear 374–375, 77–85 (2017)

    Google Scholar 

  22. Lancaster, J.K.: Polymer-based bearing materials—the role of fillers and fibre reinforcement in wear. Wear 22, 412 (1972)

    Google Scholar 

  23. Burris, D.L., Sawyer, W.G.: Improved wear resistance in alumina-PTFE nanocomposites with irregular shaped nanoparticles. Wear 260, 915–918 (2006)

    CAS  Google Scholar 

  24. Krick, B.A., Pitenis, A.A., Harris, K.L., Junk, C.P., Sawyer, W.G., Brown, S.C., et al.: Ultralow wear fluoropolymer composites: Nanoscale functionality from microscale fillers. Tribol. Int. 95, 245–255 (2016)

    CAS  Google Scholar 

  25. Bahadur, S., Gong, D.: The action of fillers in the modification of the tribological behavior of polymers. Wear 158, 41–59 (1992)

    CAS  Google Scholar 

  26. Conte, M., Pinedo, B., Igartua, A.: Role of crystallinity on wear behavior of PTFE composites. Wear 307, 81–86 (2013)

    CAS  Google Scholar 

  27. Burris, D.L., Sawyer, W.G.: Tribological sensitivity of PTFE/alumina nanocomposites to a range of traditional surface finishes. Tribol. Trans. 48, 147–153 (2005)

    CAS  Google Scholar 

  28. Campbell, K.L., Sidebottom, M.A., Atkinson, C.C., Babuska, T.F., Kolanovic, C.A., Boulden, B.J., et al.: Ultralow wear PTFE-based polymer composites—the role of water and tribochemistry. Macromolecules 52, 5268–5277 (2019)

    CAS  Google Scholar 

  29. Harris, K.L., Pitenis, A.A., Sawyer, W.G., Krick, B.A., Blackman, G.S., Kasprzak, D.J., et al.: PTFE tribology and the role of mechanochemistry in the development of protective surface films. Macromolecules 48, 3739–3745 (2015)

    CAS  Google Scholar 

  30. Krick, B.A., Ewin, J.J., Blackman, G.S., Junk, C.P., Gregory Sawyer, W.: Environmental dependence of ultra-low wear behavior of polytetrafluoroethylene (PTFE) and alumina composites suggests tribochemical mechanisms. Tribol. Int. 51, 42–46 (2012)

    CAS  Google Scholar 

  31. Krick, B.A., Ewin, J.J., McCumiskey, E.J.: Tribofilm formation and run-in behavior in ultra-low-wearing polytetrafluoroethylene (PTFE) and alumina nanocomposites. Tribol. Trans. 57, 1058–1065 (2014)

    CAS  Google Scholar 

  32. Pitenis, A.A., Ewin, J.J., Harris, K.L., Sawyer, W.G., Krick, B.A.: In vacuo tribological behavior of polytetrafluoroethylene (PTFE) and alumina nanocomposites: the importance of water for ultralow wear. Tribol. Lett. 53, 189–197 (2013)

    Google Scholar 

  33. Pitenis, A.A., Harris, K.L., Junk, C.P., Blackman, G.S., Sawyer, W.G., Krick, B.A.: Ultralow wear PTFE and alumina composites: it is all about tribochemistry. Tribol. Lett. (2015). https://doi.org/10.1007/s11249-014-0445-6

    Article  Google Scholar 

  34. Bhargava, S., Blanchet, T.A.: Unusually effective nanofiller a contradiction of microfiller-specific mechanisms of PTFE composite wear resistance? J. Tribol. (2016). https://doi.org/10.1115/1.4032818

    Article  Google Scholar 

  35. McElwain, S.E., Blanchet, T.A., Schadler, L.S., Sawyer, W.G.: Effect of particle size on the wear resistance of alumina-filled PTFE micro- and nanocomposites. Tribol. Trans. 51, 247–253 (2008)

    CAS  Google Scholar 

  36. Onodera, T., Kawasaki, K., Nakakawaji, T., Higuchi, Y., Ozawa, N., Kurihara, K., et al.: Effect of tribochemical reaction on transfer-film formation by poly(tetrafluoroethylene). J. Phys. Chem. C 118, 11820–11826 (2014a)

    CAS  Google Scholar 

  37. Takeichi, Y., Wibowo, A., Kawamura, M., Uemura, M.: Effect of morphology of carbon black fillers on the tribological properties of fibrillated PTFE. Wear 264, 308–315 (2008)

    CAS  Google Scholar 

  38. Kandanur, S.S., Rafiee, M.A., Yavari, F., Schrameyer, M., Yu, Z.-Z., Blanchet, T.A., et al.: Suppression of wear in graphene polymer composites. Carbon 50, 3178–3183 (2012)

    CAS  Google Scholar 

  39. Blanchet, T.A., Kandanur, S.S., Schadler, L.S.: coupled effect of filler content and countersurface roughness on PTFE nanocomposite wear resistance. Tribol. Lett. 40, 11–21 (2010)

    CAS  Google Scholar 

  40. Onodera, T., Kawasaki, K., Nakakawaji, T., Higuchi, Y., Ozawa, N., Kurihara, K., et al.: Tribocatalytic reaction of polytetrafluoroethylene sliding on an aluminum surface. J. Phys. Chem. C 119, 15954–15962 (2015)

    CAS  Google Scholar 

  41. Alam, K.I., Dorazio, A., Burris, D.L.: Polymers tribology exposed: eliminating transfer film effects to clarify ultralow wear of PTFE. Tribol. Lett. (2020). https://doi.org/10.1007/s11249-020-01306-9

    Article  Google Scholar 

  42. Ye, J., Zhang, H., Liu, X., Liu, K.: Low wear steel counterface texture design: a case study using micro-pits texture and alumina–PTFE nanocomposite. Tribol. Lett. 65, 165 (2017)

    Google Scholar 

  43. Burris, D.L., Sawyer, W.G.: Measurement uncertainties in wear rates. Tribol. Lett. 36, 81–87 (2009)

    Google Scholar 

  44. Ye, J., Burris, D.L., Xie, T.: A review of transfer films and their role in ultra-low-wear sliding of polymers. Lubricants 4, 4 (2016)

    Google Scholar 

  45. Sawyer, W.G., Argibay, N., Burris, D.L., Krick, B.A.: Mechanistic studies in friction and wear of bulk materials. Annu. Rev. Mater. Res. 44, 395–427 (2014)

    Google Scholar 

  46. Khare, H.S., Moore, A.C., Haidar, D.R., Gong, L., Ye, J., Rabolt, J.F., et al.: Interrelated effects of temperature and environment on wear and tribochemistry of an ultralow wear PTFE composite. J. Phys. Chem. C 119, 16518–16527 (2015)

    CAS  Google Scholar 

  47. Trueba, M., Trasatti, S.P.: γ-alumina as a support for catalysts: a review of fundamental aspects. Eur. J. Inorg. Chem. 2005, 3393–3403 (2005)

    Google Scholar 

  48. Paglia, G., Rohl, A.L., Buckley, C.E., Gale, J.D.: Determination of the structure ofγ-alumina from interatomic potential and first-principles calculations: the requirement of significant numbers of nonspinel positions to achieve an accurate structural model. Phys. Rev. B (2005). https://doi.org/10.1103/PhysRevB.71.224115

    Article  Google Scholar 

  49. Sun, W., Liu, X., Liu, K., Wang, W., Ye, J.: Ultralow wear PTFE composites filled with beryllia and germania particles. Wear 450–451, 203270 (2020)

    Google Scholar 

  50. Padmaja, P., Pillai, P.K., Warrier, K.G.K., Padmanabhan, M.: Adsorption isotherm and pore characteristics of nano alumina derived from sol-gel boehmite. J. Porous Mater. 11, 147–155 (2004)

    CAS  Google Scholar 

  51. Liang, C.Y., Krimm, S.: Infrared spectra of high polymers. III. Polytetrafluoroethylene and polychlorotrifluoroethylene. J. Chem. Phys. 25, 563–571 (1956)

    CAS  Google Scholar 

  52. Wang, Y., Du, X., Guo, L., Liu, H.: Chain orientation and headgroup structure in Langmuir monolayers of stearic acid and metal stearate (Ag Co, Zn, and Pb) studied by infrared reflection-absorption spectroscopy. J. Chem. Phys. 124, 134706 (2006)

    Google Scholar 

  53. Przedlacki, M., Kajdas, C.: Tribochemistry of fluorinated fluids hydroxyl groups on steel and aluminum surfaces. Tribol. Trans. 49, 202–214 (2006)

    CAS  Google Scholar 

  54. Kajdas, C.K.: Importance of the triboemission process for tribochemical reaction. Tribol. Int. 38, 337–353 (2005)

    CAS  Google Scholar 

  55. Vanni, H., Rabolt, J.F.: Fourier transform infrared investigation of the effects of irradiation on the 19 and 30°C phase transitions in polytetrafluoroethylene. J. Polym. Sci 18, 587–596 (1980)

    CAS  Google Scholar 

  56. Lenk, T.J., Hallmark, V.M., Hoffmann, C.L., Rabolt, J.F., Castner, D.G., Erdelen, C., et al.: Structural investigation of molecular organization in self-assembled monolayers of a semifluorinated amidethiol. Langmuir 10, 4610–4617 (1994)

    CAS  Google Scholar 

  57. Haidar, D.R., Alam, K.I., Burris, D.L.: Tribological insensitivity of an ultralow-wear poly(etheretherketone)–polytetrafluoroethylene polymer blend to changes in environmental moisture. J. Phys. Chem. C 122, 5518–5524 (2018)

    CAS  Google Scholar 

  58. Danchevskaya, M., Ivakin, Y.D., Martynova, L., Zuy, A., Muravieva, G., Lazarev, V.: Investigation of thermal transformations in aluminium hydroxides subjected to mechanical treatment. J. Therm. Anal. 46, 1215–1222 (1996)

    CAS  Google Scholar 

  59. Onodera, T., Kawasaki, K., Nakakawaji, T., Higuchi, Y., Ozawa, N., Kurihara, K., et al.: Chemical reaction mechanism of polytetrafluoroethylene on aluminum surface under friction condition. J. Phys. Chem. C 118, 5390–5396 (2014b)

    CAS  Google Scholar 

  60. Morales, W.: The decomposition of a commercial perfluoropolyalkylether on alpha and gamma catalytic aluminas. Tribol. Trans. 39, 148–156 (1996)

    CAS  Google Scholar 

  61. Limcharoen, A., Pakpum, C., Limsuwan, P.: An X-ray photoelectron spectroscopy investigation of redeposition from fluorine-based plasma etch on magnetic recording slider head substrate. Proced. Eng. 32, 1043–1049 (2012)

    CAS  Google Scholar 

  62. Baggetto, L., Dudney, N.J., Veith, G.M.: Surface chemistry of metal oxide coated lithium manganese nickel oxide thin film cathodes studied by XPS. Electrochim. Acta 90, 135–147 (2013)

    CAS  Google Scholar 

  63. Ye, J., Khare, H.S., Burris, D.L.: Quantitative characterization of solid lubricant transfer film quality. Wear 316, 133–143 (2014)

    CAS  Google Scholar 

  64. Khare, H.S., Burris, D.L.: A quantitative method for measuring nanocomposite dispersion. Polymer 51, 719–729 (2010)

    CAS  Google Scholar 

  65. Haidar, D.R., Ye, J., Moore, A.C., Burris, D.L.: Assessing quantitative metrics of transfer film quality as indicators of polymer wear performance. Wear 380–381, 78–85 (2017)

    Google Scholar 

  66. Blanchet, T.A.: A model for polymer composite wear behavior including preferential load support and surface accumulation of filler particulates. Tribol. Trans. 38, 821–828 (1995)

    CAS  Google Scholar 

  67. Briscoe, B.: Wear of polymers: an essay on fundamental aspects. Tribol. Int. 14, 231–243 (1981)

    CAS  Google Scholar 

  68. Ye, J., Khare, H.S., Burris, D.L.: Transfer film evolution and its role in promoting ultra-low wear of a PTFE nanocomposite. Wear 297, 1095–1102 (2013)

    CAS  Google Scholar 

  69. Ye, J., Moore, A.C., Burris, D.L.: Transfer film tenacity: a case study using ultra-low-wear alumina–PTFE. Tribol. Lett. 59, 50 (2015)

    Google Scholar 

  70. Deli, G., Qunji, X., Hongli, W.: ESCA study on tribochemical characteristics of filled PTFE. Wear 148, 161–169 (1991)

    Google Scholar 

  71. Gao, X., Chorover, J.: Adsorption of perfluorooctanoic acid and perfluorooctanesulfonic acid to iron oxide surfaces as studied by flow-through ATR-FTIR spectroscopy. Environ. Chem. 9, 148 (2012)

    CAS  Google Scholar 

  72. Doan, V., Köppe, R., Kasai, P.H.: Dimerization of carboxylic acids and salts: an IR study in perfluoropolyether media. J. Am. Chem. Soc. 119, 9810–9815 (1997)

    CAS  Google Scholar 

  73. Crist, B.V.: XPS in industry—problems with binding energies in journals and binding energy databases. J. Electron Spectrosc. Relat. Phenom. 231, 75–87 (2019)

    CAS  Google Scholar 

  74. McHale, J., Auroux, A., Perrotta, A., Navrotsky, A.: Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277, 788–791 (1997)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the financial support from the National Natural Science Foundation of China (Grant Numbers 51875153 and 51875152, 51975174), Postdoctoral Research Foundation of China and Fundamental Research Funds for the Central Universities (JZ2020HGTB0054). The authors also gratefully thank Yu Ning, Gang Qian, Tianci Zhang (Hefei University of Technology) for their help in spectroscopy analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxin Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Liu, X., Liu, K. et al. Paradoxical Filler Size Effect on Composite Wear: Filler–Matrix Interaction and Its Tribochemical Consequences. Tribol Lett 68, 131 (2020). https://doi.org/10.1007/s11249-020-01375-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01375-w

Keywords

Navigation