Skip to main content
Log in

Cross-genera amplification of Cajanus spp. specific SSR markers in Clitoria ternatea (L.) and their application in genetic diversity studies

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Clitoria ternatea (L.) is a medicinal leguminous plant and is cultivated to cater the need of herbal industries and asthetic purposes. The unavailability of steady molecular marker impedes the genetic improvement of C. ternatea. In the present study, transferability of 98 pairs of Cajanus spp. specific SSR primers were assessed among 14 genotypes of C. ternatea, varied for their flower color, floral architecture and bio-metabolite (taraxerol and delphinidin) content, and out of them 43 had successfully amplified the fragments. Among them, 36 pairs of primers showed 100% transferability, whereas rest seven varied from 42.86 to 92.85% transferability. The transferable 43 pairs of SSR primers generated 196 alleles across the 14 genotypes and the AMOVA analysis showed moderate genetic variation (55.1%) among the genotypes of C. ternatea, which was also reinforced by Nei’s genetic distance and gene identity estimates derived haplotype matrix. Similarly, both the principal coordinate analysis and dendrogram grouped these 14 genotypes of C. ternatea into two major clusters based on SSR allele distribution and frequency, and the clustering pattern is in accordance with petal color but in contrast to floral architecture. MCheza based outlier analysis revealed 16 alleles for balancing selection, which are putatively involved in the maintenance of genetic polymorphism in C. ternatea. Moreover, the estimates of molecular diversity and bio-metabolite content revealed the possible use of these genotypes in future breeding programme of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMOVA:

Analysis of molecular variance

CTAB:

Cetyl trimethyl ammonium bromide

EMR:

Effective multiplex ratio

HPLC:

High performance liquid chromatography

HPTLC:

High performance thin layer chromatography

MI:

Marker Index

PCoA:

Principal coordinate analysis

PIC:

Polymorphic information content

Rp:

Resolving power

SSR:

Simple sequence repeat

UPGMA:

Un-weighted pair group method with arithmetic mean

References

  • Abdel-Mawgood AL, Assaeed AM, Al-Abdallatif TI (2006) Application of RAPD technique for the conservation of an isolated population of Capparis deciduas Alexandria. J Agric Res 51:171–177

    Google Scholar 

  • Adamski DJ, Dudley NS, Morden CW, Borthakur D (2013) Cross amplification of non-native Acacia species in the Hawaiian Islands using microsatellite markers from Acacia koa. Plant Biosyst 147:1088–1091

    Google Scholar 

  • Ali Z, Ganie S, Narulaa A, Sharma M, Srivastava P (2013) Intra-specific genetic diversity and chemical profiling of different accessions of Clitoria ternatea L. Ind Crops Prod 43:768–773

    CAS  Google Scholar 

  • Alisoltani A, Ebrahimi S, Azaria S, Hematyar M, Shiran B, Jahanbazi H, Fallahi H, Mousavi-Fard S (2016) Parallel consideration of SSRs and differentially expressed genes under abiotic stress for the targeted development of functional markers in almond and related Prunus species. Sci Hortic 198:462–472

    CAS  Google Scholar 

  • Antao T, Beaumont MA (2011) MCheza: a workbench to detect selection using dominant markers. Bioinformatics 27:1717–1718

    CAS  PubMed  Google Scholar 

  • Babu BK, Sood S, Kumar D, Joshi A, Pattnayak A, Kant L, Upadhyaya HD (2018) Cross genera transferability of rice and finger millet genomic SSRs to barnyard millets (Echinochloa spp.). 3 Biotech 8:95

    Google Scholar 

  • Bishoyi A, Pillai V, Geetha K, Maiti S (2014) Assessment of genetic diversity in Clitoria ternatea L. populations from different parts of India by RAPD and ISSR markers. Genet Resour Crop Evol 61:1597–1609

    Google Scholar 

  • Bohra A, Dubey A, Saxena RK, Penmetsa RV, Poornima KN, Kumar N, Farmer AD, Srivani G, Upadhyaya HD, Gothalwal R, Ramesh S, Singh D, Saxena KB, Kishor PBK, Singh NK, Town CD, May GD, Cook DR, Varshney RK (2011) Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea, (Cajanus spp.). BMC Plant Biol 11:56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, Stein H, Dorken B, Jenuwein T, Schmitt CA (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:660–665

    CAS  PubMed  Google Scholar 

  • Chandra A (2011) Use of EST database markers from Medicago truncatula in the transferability to other forage legumes. J Environ Biol 32:347–354

    CAS  PubMed  Google Scholar 

  • Chen C, Kong ANT (2005) Dietary cancer chemopreventive compounds: from signaling and gene expression to pharmacological effects. Trends Pharmacol Sci 26:318–326

    PubMed  Google Scholar 

  • Choi HK, Mun JH, Kin DJ, Zhu H, Baek JM, Mudjge J, Roe B, Ellis N, Doyle J, Kiss GB, Young ND, Cook DR (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci 101:15289–15294

    CAS  PubMed  Google Scholar 

  • Choudhary S, Sethy NK, Shokeen B, Bhatia S (2009) Development of Chickpea EST-SSR markers and analysis of allelic variation across related species. Theor Appl Genet 118:591–608

    CAS  PubMed  Google Scholar 

  • Cook BG, Pengelly BC, Brown SD, Donnelly JL, Eagles DA, Franco MA, Hanson J, Mullen BF, Partridge IJ, Peters M, Schultze-Kraft R (2005) Tropical forages: an interactive tool [CDROM]. CSIRO, DPI &F (Qld), CIAT and ILRI, Brisbane, Australia

  • Datta S, Kaashyap M, Kumar S (2010) Amplification of chickpea-specific SSR primers in Cajanus species and their validity in diversity analysis. Plant Breed 129:334–340

    CAS  Google Scholar 

  • Datta S, Mahfooz S, Singh P, Choudhary AK, Singh F, Kumar S (2010) Cross-genera amplification of informative microsatellite markers from common bean and lentil for the assessment of genetic diversity in pigeonpea. Physiol Mol Biol Plants 16(2):123–134

    PubMed  PubMed Central  Google Scholar 

  • Datta S, Mahfooz S, Singh P, Choudhary AK, Chaturvedi NN (2013) Conservation of miceosatellite region across legume genera increases marker repertoire in pigeonpea. Aust J Crop Sci 7(13):1990–1997

    Google Scholar 

  • Dayanand S, Kamaljit SB, Kesseli R (1997) Conservation of microsatellites among tropical trees (Leguminosae). Am J Bot 84:1658–1663

    Google Scholar 

  • Fukui Y, Tanaka Y, Kusumi T, Iwashita T, Nomoto K (2003) A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3’, 5’hydroxylase gene. Phytochemistry 63:15–23

    CAS  PubMed  Google Scholar 

  • Gantait S, Debnath S, Ali MN (2014) Genomic profile of the plants with pharmaceutical value. 3 Biotech 4:563–578

    PubMed  PubMed Central  Google Scholar 

  • Gupta S, Prasad M (2009) Development and characterization of genic SSR markers in Medicago truncatula and their transferability in leguminous and non-leguminous species. Genome 52(9):761–771

    CAS  PubMed  Google Scholar 

  • Gutierrez MV, Vaz Patto MC, Huguet T, Cubero JI, Moreno MT, Torres AM (2005) Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theor Appl Genet 110:1210–1217

    CAS  PubMed  Google Scholar 

  • ILDIS (1994) Plants and their constituents. In: Bisby FA (ed) Phytochemical dictionary of the Leguminosae. Chapman and Hall, New York, pp 1–748

    Google Scholar 

  • Jingade PK, Bhosale LV, Ravikumar RL (2014) Characterization of microsatellite markers their transferability to orphan legumes and use in determination of genetic diversity among Chickpea (Cicer arietinum L.) cultivars. J Crop Sci Biotechnol 17:191–199

    Google Scholar 

  • Kapoor LD (2005) Handbook of Ayurvedic medicinal plants. CRC Press, Boca Raton

    Google Scholar 

  • Kashi Y, King DG (2006) Simple sequence repeats as advantageous mutators in evolution. Trends Genet 22(5):253–259

    CAS  PubMed  Google Scholar 

  • Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao GQ, Nehra NS, Lu CY, Dyson BK, Tsuda S, Ashikari T, Kusumi T, Mason JG, Tanaka Y (2007) Engineering of rose flavonoid biosynthetic pathway successfully generated blue hued flowers accumulating delphinidin. Plant Cell Physiol 48(11):1589–1600

    CAS  PubMed  Google Scholar 

  • Khare CP (2004) Encyclopedia of Indian medicinal plants. Springer Publication, Heidelberg

    Google Scholar 

  • Kumar V, Mukherjee K, Kumar S, Mal M, Mukherjee PK (2008) Validation of HPTLC method for the analysis of taraxerol in Clitoria ternatea. Phytochem Anal 19:244–250

    CAS  PubMed  Google Scholar 

  • Lamy S, Blanchette M, Michaud-Levesque J, Lafleur R, Durocher Y, Moghrabi A, Barrette S, Gingras D (2006) Delphinidin, a dietary anthocyanidin, inhibits vascular endothelial growth factor receptor-2 phosphorylation. Carcinogenesis 27:989–996

    CAS  PubMed  Google Scholar 

  • Lee SR, Choi JE, Lee BY, Yu JN, Lim CE (2018) Genetic diversity and structure of an endangered medicinal herb: implications for conservation. AoB Plants 10(2):Ply 021

    Google Scholar 

  • Li Y-C, Korol AB, Fahima T, Nevo E (2004) Microsatelites within genes: structure, function and evolution. Mol Biol Evol 21(6):991–1007

    CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Mishra RK, Gangadhar BH, Nookaraju A, Kumar S, Park SW (2012) Development of EST-derived SSR markers in pea (Pisum sativum) and their potential utility for genetic mapping and transferability. Plant Breed 131(1):118–124

    CAS  Google Scholar 

  • Mishra RR, Sahu A, Rath SC, Mishra SP, Panigrahi J (2012) Cyto-morphological and molecular characterization of Cajanus cajan × C. scarabaeoides F1 hybrid. Nucleus 55:27–35

    Google Scholar 

  • Mishra RR, Sahu AR, Rath SC, Behera B, Panigrahi J (2013) Molecular mapping of locus controlling resistance to Helicoverpa armigera (Hubner) in Cajanus cajan L. (Millspaugh) using interspecific mapping population. Nucleus 56:91–97

    Google Scholar 

  • Mishra SK, Nag A, Naik A, Rath SC, Gupta K, Gupta AK, Panigrahi J (2019) Characterization of host-response to bruchids (Callosobruchus chinensis and C. maculatus) in 39 genotypes belongs to 12 Cajanus spp. and assessment of molecular diversity inter se. J Stored Prod Res 81:76–90

    Google Scholar 

  • Morris J (2009) Characterization of butterfly pea (Clitoria ternatea L.) accessions for morphology, phenology, reproduction and potential nutraceutical, pharmaceutical trait utilization. Genet Resour Crop Evol 56:421–427

    Google Scholar 

  • Mukherjee PK, Kumar V, Kumar NS, Heinrich M (2008) The ayurvedic medicine Clitoria ternatea-from traditional use to scientific assessment. J Ethnopharmacol 120:291–301

    PubMed  Google Scholar 

  • Naik A, Patel AK, Mishra SK, Nag A, Panigrahi J (2019) Characterization of intraspecific hybrid in Clitoria ternatea (L.) using morpho-physiological, cytogenetic, metabolic and molecular markers. Caryologia 72:11–22

    Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Google Scholar 

  • Nevo E (2012) “Evolution Canyon”, a potential microscale monitor of global warming across life. Proc Nat Acad Sci USA 109:2960–2965

    CAS  PubMed  Google Scholar 

  • Niering P, Michels G, Watjen W, Ohler S, Steffan B, Chovolou Y, Kampkotter A, Proksch P, Kahl R (2005) Protective and detrimental effects of kaempferol in rat H4IIE cells: implication of oxidative stress and apoptosis. Toxicol Appl Pharmacol 209:114–122

    CAS  PubMed  Google Scholar 

  • Noda N (2018) Recent advances in the research and development of blue flowers. Breed Sci 68:79–87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Odeny DA, Jayashree B, Ferguson M, Hoisington D, Crouch J, Gebhardt C (2007) Development, characterization and utilization of microsatellite markers in pigeonpea. Plant Breed 126:130–136

    CAS  Google Scholar 

  • Oguis GK, Gilding EK, Jackson MA, Craik DJ (2019) Butterfly pea (Clitoria ternatea), a cyclotide-bearing plant with applications in agriculture and medicine. Front Plant Sci 10:645

    PubMed  PubMed Central  Google Scholar 

  • Pandian A, Ford R, Paul WJ (2000) Transferability of sequence tagged microsatellite site (STMS) primers across four major pulses. Plant Mol Biol Rep 18:395a–395h

    Google Scholar 

  • Parida SK, Verma M, Yadav SK, Ambawat S, Das S, Garg R, Jain M (2015) Development of genome wide information simple sequence repeat markers for large-scale genotyping applications in chickpea and development of web resource. Front Plant Sci 6:645

    PubMed  PubMed Central  Google Scholar 

  • Parrotta JA (2001) Healing plants of peninsular India. CABI Publishers, New York

    Google Scholar 

  • Peakall R, Gillmore S, Keys W, Morgante M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legumes genera: Implications for the transferability of SSRs in plants. Mol Biol Evol 15:1275–1287

    CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peleg Z, Saranga Y, Krugman T, Abbo S, Nevo E, Fahima T (2008) Allelic diversity associated with aridity gradient in wild emmer wheat populations. Plant Cell Environ 31:39–49

    PubMed  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Voge J, Tingey S (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    CAS  Google Scholar 

  • Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112

    CAS  Google Scholar 

  • Qin Z, Wang Y, Wang Q, Li A, Hou F, Zhang L (2015) Evolution analysis of simple sequence repeats in plant genome. PLoS ONE 10(12):e0144108

    PubMed  PubMed Central  Google Scholar 

  • Reddy MRK, Rathour R, Kumar N, Katoch P, Sharma TR (2010) Cross-genera legume SSR markers for analysis of genetic diversity in lens species. Plant Breed 129:514–518

    CAS  Google Scholar 

  • Ren J, Chen L, Sun D, You FM, Wang J, Peng Y, Nevo E, Beiles A, Sun D, Luo M, Peng J (2013) SNP revealed genetic diversity in wild emmer wheat correlates with ecological factors. BMC Evol Biol 13:169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rohlf FJ (2000) NTSYS-PC: numerical taxonomy and multivariate analysis system, version 202. Exeter Software, Setauket, New York

    Google Scholar 

  • Saxena RK, Prathima C, Saxena KB, Hoisington DA, Singh NK, Varshney RK (2010) Novel SSR markers for polymorphism detection in pigeonpea (Cajanus spp.). Plant Breed 129:142–148

    CAS  Google Scholar 

  • Sethiya NK, Nahata A, Mishra SH, Dixit VK (2009) An update on Shankhpushpi, a cognition boosting ayurvedic medicine. J Complement Integr Med 7:1001–1022

    CAS  Google Scholar 

  • Singh BK, Mishra DC, Yadav S et al (2016) Identification, characterization, validation and cross species amplification of genic-SSRs in Indian mustard (Brassica juncea). J Plant Biochem Biotechnol 25(4):410–420

    CAS  Google Scholar 

  • Singletary KW, Jung KJ, Giusti M (2007) Anthocyanin-rich grape extract blocks breast cell DNA damage. J Med Food 10:244–251

    CAS  PubMed  Google Scholar 

  • Sivaramakrishnan S, Seetha K, Rao AN, Singh L (1997) RFLP analysis of cytoplasmic male sterile line of pigeonpea (Cajanus cajan L. Millsp.) developed by interspecific crosses. Euphytica 93:307–312

    CAS  Google Scholar 

  • Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, Senior ML, Mitchell SE, Kresovich S, Ziegle J (1997) An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparison with data from RFLPs and pedigree. Theor Appl Genet 95:163–173

    CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. Freeman WH, San Francisco

    Google Scholar 

  • Swain S, Rout K, Chand P (2012) Production of triterpenoid anti-cancer compound taraxerol in agrobacterium-transformed root cultures of butterfly pea (Clitoria ternatea L.). Appl Biochem Biotechnol 168:487–503

    CAS  PubMed  Google Scholar 

  • Swapna M, Shivaraju K, Sharma RK, Singh NK, Mohapatra T (2011) Single-strand conformational polymorphism of EST-SSRs: a potential tool for diversity analysis and varietal Identification in sugarcane. Plant Mol Biol Rep 29:505–513

    Google Scholar 

  • Swati DY, Malode SN, Waghmare VN, Thakre P (2011) Genetic relationship and diversity analysis of Clitoria ternatea variants and Clitoria biflora using random amplified polymorphic DNA (RAPD) markers. Afr J Biotechnol 10:18065–18075

    Google Scholar 

  • Vieira MLC, Santini L, Diniz AL, Munhoz CF (2016) Microsatelite markers: what they mean and why they are so useful. Genet Mol Biol 39(3):312–328

    PubMed  PubMed Central  Google Scholar 

  • Wallace LE (2002) Examining the effects of fragmentation on genetic variation in Platanthera leucophaea (Orchidaceae): inferences from allozyme and random amplified polymorphic DNA markers. Plant Species Biol 17:37–49

    Google Scholar 

  • Wang Z, Yu G, Shi B, Wang X, Qiang H, Gao H (2014) Development and characterization of simple sequence repeat (SSR) markers based on RNA sequencing of Medicago satori and in sillico mapping onto M. trancatula genome. PLoS ONE 9(3):e92029

    PubMed  PubMed Central  Google Scholar 

  • Winter P, Pfaff T, Udupa SM, Huttel B, Sharma PC, Sahi S, Arreguin-Espinoza R, Weigand F, Muehlbaccer FI, Kahl G (1999) Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol Genet Genom 262:90–101

    CAS  Google Scholar 

  • Xia H, Zheng X, Chen L, Gao H, Yang H, Long P, Rong J, Lu B, Li J, Luo L (2014) Genetic differentiation revealed by selective loci of drought responding EST-SSRs between upland and lowland rice in China. PLoS ONE 9:106352

    Google Scholar 

  • Zhang Y, Vareed SK, Nair MG (2005) Human tumor cell growth inhibition by non-toxic anthocyanins, the pigments in fruits and vegetables. Life Sci 76:1465–1472

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are profoundly grateful to the SERB, Govt. of India, New Delhi, for financial assistance through an R&D project (EMR/2016/006351) to the corresponding author (JP) and the DST, Government of Odisha for providing Biju Patnaik Research Fellowship to the author (AN) for pursuing the doctoral degree, and acknowledge the Vice-Chancellor, Khallikote University, Berhampur for providing laboratory facilities.

Funding

Science and Engineering Research Board, Govt. of India; Grant no. EMR/2016/006351.

Author information

Authors and Affiliations

Authors

Contributions

JP—conceived and designed the experiments, fund acquisition; AN,SKM and GKS—performed the experiments; JP, AP, AN and SKP—analysed the data, deduced interpretations and performed statistical and computational analysis; JP, AN and AKP—wrote the manuscript including Tables and Figures; All authors have reviewed the manuscript and have given approval to the final version.

Corresponding author

Correspondence to Jogeswar Panigrahi.

Ethics declarations

Conflict of interest

The authors declare there is no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, A., Mishra, S.K., Nag, A. et al. Cross-genera amplification of Cajanus spp. specific SSR markers in Clitoria ternatea (L.) and their application in genetic diversity studies. Physiol Mol Biol Plants 26, 2371–2390 (2020). https://doi.org/10.1007/s12298-020-00907-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-020-00907-x

Keywords

Navigation