Skip to main content
Log in

Identification of reference genes for real-time polymerase chain reaction gene expression studies in Nile rats fed Water-Soluble Palm Fruit Extract

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The Nile rat (Arvicanthis niloticus) is a novel diurnal carbohydrate-sensitive rodent useful for studies on type 2 diabetes mellitus (T2DM) and the metabolic syndrome. Hepatic responses to T2DM and any interventions thereof can be evaluated via transcriptomic gene expression analysis. However, the study of gene expression via real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) requires identification of stably expressed reference genes for accurate normalisation. This study describes the evaluation and identification of stable reference genes in the livers from Control Nile rats as well as those supplemented with Water-Soluble Palm Fruit Extract, which has been previously shown to attenuate T2DM in this animal model. Seven genes identified as having stable expression in RNA-Sequencing transcriptome analysis were chosen for verification using real-time RT-qPCR. Six commonly used reference genes from previous literature and two genes from a previous microarray gene expression study in Nile rats were also evaluated. The expression data of these 15 candidate reference genes were analysed using the RefFinder software which incorporated analyses performed by various algorithms. The Hpd, Pnpla6 and Vpp2 genes were identified as the most stable across the 36 samples tested. Their applicability was demonstrated through the normalisation of the gene expression profiles of two target genes, Cela1 and Lepr. In conclusion, three novel reference genes which can be used for robust normalisation of real-time RT-qPCR data were identified, thereby facilitating future hepatic gene expression studies in the Nile rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during the current study are available in the European Nucleotide Archive repository, https://www.ebi.ac.uk/ena/ (Study accession number: PRJEB30590).

Code availability

Not applicable.

References

  1. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    CAS  PubMed  Google Scholar 

  2. Kappel A, Keller A (2017) miRNA assays in the clinical laboratory: workflow, detection technologies and automation aspects. Clin Chem Lab Med 55:636–647

    CAS  PubMed  Google Scholar 

  3. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582

    CAS  PubMed  Google Scholar 

  4. Kozera B, Rapacz M (2013) Reference genes in real-time PCR. J Appl Genet 54:391–406

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    PubMed  PubMed Central  Google Scholar 

  6. Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313:856–862

    CAS  PubMed  Google Scholar 

  7. Subramaniam A, Landstrom M, Hayes KC (2019) Genetic permissiveness and dietary glycemic load interact to predict Type-II Diabetes in the Nile rat (Arvicanthis niloticus). Nutrients 11:1538

    CAS  PubMed Central  Google Scholar 

  8. Subramaniam A, Landstrom M, Luu A, Hayes KC (2018) The Nile rat (Arvicanthis niloticus) as a superior carbohydrate-sensitive model for Type 2 Diabetes Mellitus (T2DM). Nutrients 10:235

    PubMed Central  Google Scholar 

  9. Sambanthamurthi R, Tan YA, Sundram K, Abeywardena M, Sambandan TG, Rha C, Sinskey AJ, Subramaniam K, Leow SS, Hayes KC, Wahid MB (2011) Oil palm vegetation liquor: a new source of phenolic bioactives. Br J Nutr 106:1655–1663

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sambandan TG, Rha CK, Sambanthamurthi R, Sinskey AJ, Tan YA, Sundram K, Wahid MB (2011) Compositions comprising shikimic acid obtained from oil palm based materials and method of producing thereof. World Patent WO 2011/159144

  11. Sambanthamurthi R, Tan YA, Sundram K, Hayes KC, Abeywardena M, Leow SS, Sekaran SD, Sambandan TG, Rha C, Sinskey AJ, Subramaniam K, Fairus S, Wahid MB (2011) Positive outcomes of oil palm phenolics on degenerative diseases in animal models. Br J Nutr 106:1664–1675

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bolsinger J, Pronczuk A, Sambanthamurthi R, Hayes KC (2014) Anti-diabetic effects of palm fruit juice in the Nile rat (Arvicanthis niloticus). J Nutr Sci 3:e5

    PubMed  PubMed Central  Google Scholar 

  13. Chaabo F, Pronczuk A, Maslova E, Hayes K (2010) Nutritional correlates and dynamics of diabetes in the Nile rat (Arvicanthis niloticus): a novel model for diet-induced type 2 diabetes and the metabolic syndrome. Nutr Metab 7:29

    Google Scholar 

  14. Noda K, Melhorn MI, Zandi S, Frimmel S, Tayyari F, Hisatomi T, Almulki L, Pronczuk A, Hayes KC, Hafezi-Moghadam A (2010) An animal model of spontaneous metabolic syndrome: Nile grass rat. Faseb J 24:2443–2453

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bolsinger J, Pronczuk A, Hayes KC (2013) Dietary carbohydrate dictates development of Type 2 diabetes in the Nile rat. J Nutr Biochem 24:1945–1952

    CAS  PubMed  Google Scholar 

  16. Leow SS, Bolsinger J, Pronczuk A, Hayes KC, Sambanthamurthi R (2016) Hepatic transcriptome implications for palm fruit juice deterrence of type 2 diabetes mellitus in young male Nile rats. Genes Nutr 11:29

    PubMed  PubMed Central  Google Scholar 

  17. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  18. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    CAS  PubMed  Google Scholar 

  20. Mistry J, Finn RD, Eddy SR, Bateman A, Punta M (2013) Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res 41:e121

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:421

    Google Scholar 

  22. Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212

    CAS  PubMed  Google Scholar 

  23. Weijers SR, de Jonge J, van Zanten O, Benedetti L, Langeveld J, Menkveld HW, van Nieuwenhuijzen AF (2012) KALLISTO: cost effective and integrated optimization of the urban wastewater system Eindhoven. Water Pract Technol 7:wpt2012036

    Google Scholar 

  24. Leinonen R, Akhtar R, Birney E, Bower L, Cerdeno-Tarraga A, Cheng Y, Cleland I, Faruque N, Goodgame N, Gibson R, Hoad G, Jang M, Pakseresht N, Plaister S, Radhakrishnan R, Reddy K, Sobhany S, Ten Hoopen P, Vaughan R, Zalunin V, Cochrane G (2011) The European Nucleotide Archive. Nucleic Acids Res 39:D28–D31

    CAS  PubMed  Google Scholar 

  25. Liu Y, Qin Z, Cai L, Zou L, Zhao J, Zhong F (2017) Selection of internal references for qRT-PCR assays of human hepatocellular carcinoma cell lines. Biosci Rep. https://doi.org/10.1042/BSR20171281

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zarybnicky T, Matouskova P, Ambroz M, Subrt Z, Skalova L, Bousova I (2019) The selection and validation of reference genes for mRNA and microRNA expression studies in human liver slices using RT-qPCR. Genes (Basel) 10:763

    CAS  Google Scholar 

  27. Gong H, Sun L, Chen B, Han Y, Pang J, Wu W, Qi R, Zhang TM (2016) Evaluation of candidate reference genes for RT-qPCR studies in three metabolism related tissues of mice after caloric restriction. Sci Rep 6:38513

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tatsumi K, Ohashi K, Taminishi S, Okano T, Yoshioka A, Shima M (2008) Reference gene selection for real-time RT-PCR in regenerating mouse livers. Biochem Biophys Res Commun 374:106–110

    CAS  PubMed  Google Scholar 

  29. Svingen T, Letting H, Hadrup N, Hass U, Vinggaard AM (2015) Selection of reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under physiological and toxicological conditions. PeerJ 3:e855

    PubMed  PubMed Central  Google Scholar 

  30. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41

  31. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3–new capabilities and interfaces. Nucleic Acids Res 40:e115

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35:W43–W46

    PubMed  PubMed Central  Google Scholar 

  33. Schuler GD (1998) Electronic PCR: bridging the gap between genome mapping and genome sequencing. Trends Biotechnol 16:456–459

    CAS  PubMed  Google Scholar 

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    CAS  Google Scholar 

  35. Xie F, Xiao P, Chen D, Xu L, Zhang B (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80:75–84

    CAS  Google Scholar 

  36. Silver N, Best S, Jiang J, Thein SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7:33

    PubMed  PubMed Central  Google Scholar 

  37. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    CAS  PubMed  Google Scholar 

  38. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    CAS  PubMed  Google Scholar 

  39. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19

    PubMed  PubMed Central  Google Scholar 

  40. Bolsinger J, Landstrom M, Pronczuk A, Auerbach A, Hayes KC (2017) Low glycemic load diets protect against metabolic syndrome and Type 2 diabetes mellitus in the male Nile rat. J Nutr Biochem 42:134–148

    CAS  PubMed  Google Scholar 

  41. Livesey G, Taylor R, Livesey HF, Buyken AE, Jenkins DJA, Augustin LSA, Sievenpiper JL, Barclay AW, Liu S, Wolever TMS, Willett WC, Brighenti F, Salas-Salvado J, Bjorck I, Rizkalla SW, Riccardi G, La Vecchia C, Ceriello A, Trichopoulou A, Poli A, Astrup A, Kendall CWC, Ha MA, Baer-Sinnott S, Brand-Miller JC (2019) Dietary glycemic index and load and the risk of Type 2 Diabetes: a systematic review and updated meta-analyses of prospective cohort studies. Nutrients 11:1280

    CAS  PubMed Central  Google Scholar 

  42. Moran GR (2005) 4-Hydroxyphenylpyruvate dioxygenase. Arch Biochem Biophys 433:117–128

    CAS  PubMed  Google Scholar 

  43. Kienesberger PC, Oberer M, Lass A, Zechner R (2009) Mammalian patatin domain containing proteins: a family with diverse lipolytic activities involved in multiple biological functions. J Lipid Res 50 Suppl:S63–S68

    PubMed  Google Scholar 

  44. Glynn P (2000) Neural development and neurodegeneration: two faces of neuropathy target esterase. Prog Neurobiol 61:61–74

    CAS  PubMed  Google Scholar 

  45. Futai M, Sun-Wada GH, Wada Y, Matsumoto N, Nakanishi-Matsui M (2019) Vacuolar-type ATPase: a proton pump to lysosomal trafficking. Proc Jpn Acad Ser B Phys Biol Sci 95:261–277

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Leow SS, Sekaran SD, Sundram K, Tan YA, Sambanthamurthi R (2011) Differential transcriptomic profiles effected by oil palm phenolics indicate novel health outcomes. BMC Genom 12:432

    CAS  Google Scholar 

  47. Capdevila JH, Falck JR, Harris RC (2000) Cytochrome P450 and arachidonic acid bioactivation. Molecular and functional properties of the arachidonate monooxygenase. J Lipid Res 41:163–181

    CAS  PubMed  Google Scholar 

  48. Nojima K, Sugimoto K, Ueda H, Babaya N, Ikegami H, Rakugi H (2013) Analysis of hepatic gene expression profile in a spontaneous mouse model of type 2 diabetes under a high sucrose diet. Endocr J 60:261–274

    CAS  PubMed  Google Scholar 

  49. Meng Y, Cui Y, Zhang W, Fu S, Huang L, Dong H, Du H (2018) Integrative analysis of genome and expression profile data reveals the genetic mechanism of the diabetic pathogenesis in Goto Kakizaki (GK) rats. Front Genet 9:724

    CAS  PubMed  Google Scholar 

  50. Tang X, Li J, Xiang W, Cui Y, Xie B, Wang X, Xu Z, Gan L (2016) Metformin increases hepatic leptin receptor and decreases steatosis in mice. J Endocrinol 230:227–237

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Director-General of the Malaysian Palm Oil Board (MPOB) for permission to publish this manuscript and MPOB support staff for assistance in preparing WSPFE. In addition, the technical assistance of Jabariah Md Ali and Chang Wooi Kai in extracting the Nile rat total RNA samples in MPOB is gratefully acknowledged. The authors are also grateful to Alice Luu and Michelle Landstrom for their technical assistance in the care and handling of the Nile rat breeding colony in Brandeis University, as well as in the animal data collection and analysis.

Funding

This research was funded by MPOB and the Eleventh Malaysia Plan (RMK11) PROFENOLIS (2011101805) budget, as well as the Brandeis University Foster Biomedical Research Laboratory funds for research and teaching.

Author information

Authors and Affiliations

Authors

Contributions

SSL Total RNA sample preparation coordination, real-time RT-qPCR experiments, gene expression data analyses and interpretation, as well as manuscript writing. WKL Design of real-time RT-qPCR primers. JSK Transcriptome assembly and annotation, as well as statistical gene expression analyses. ST Design and coordination of RNA-Sequencing experiments and bioinformatics analyses. CCH Conception of RNA-Sequencing experiments. SF WSPFE preparation coordination. RS Study concept and overall experimental data interpretation. KCH Conception and design of animal study, animal sample collection coordination, as well as animal data analyses and interpretation. All authors participated in helpful discussions and read as well as approved the final manuscript.

Corresponding author

Correspondence to Soon-Sen Leow.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Consent to participate

Not applicable.

Consent for publication

The authors thank the Director-General of MPOB for permission to publish this manuscript.

Ethical approval

All animal experiments and procedures were approved by the Brandeis University Institutional Animal Care and Use Committee, with institutional and national guidelines for the care and use of laboratory animals followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leow, SS., Lee, WK., Khoo, JS. et al. Identification of reference genes for real-time polymerase chain reaction gene expression studies in Nile rats fed Water-Soluble Palm Fruit Extract. Mol Biol Rep 47, 9409–9427 (2020). https://doi.org/10.1007/s11033-020-06003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06003-3

Keywords

Navigation