Skip to main content
Log in

Fabrication of Granulate from a Fe – Cr – Co Alloy with Reduced Cobalt Content for Synthesizing Permanent Magnets by the MIM Process

  • Published:
Metal Science and Heat Treatment Aims and scope

The possibility of fabrication of granulate based on an alloy of the Fe – Cr – Co system with reduced (7 – 10%) cobalt content for synthesizing permanent magnets by the MIM process is considered. A multicomponent granulate composition (polyformaldehyde, high-pressure polyethylene, stearic acid, beeswax) of spherical powders of the Fe – Cr – Co alloy with reduced cobalt content is produced by gas sputtering (average particle diameter 4.2 μm, degree of polydispersity 0.75). The microstructure of the granulate and its granulometric composition are studied. The characteristics of the granulate (the mean diameter of the particles, their morphology and degree of polydispersity) exceed qualitatively the characteristics of the Catamold 42CrMo4 high-quality granulate produced by the BAFS Company.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. K. Niaki, S. A. Torabi, and F. Nonino, “Why manufacturers adopt additive manufacturing technologies: The role of sustainability,” J. Cleaner Prod., 222, 381 – 392 (2019).

    Article  Google Scholar 

  2. A. V. Parkhomenko, A. R. Samboruk, S. V. Ignatov, et al., “Development of binding substances in granulates for the MIM process,” Vest. Smarsk. Gos. Univ., Ser. Tekh. Nauki, No. 2, 91 – 98 (2013).

  3. D. F. Heaney (ed.), Handbook of Metal Injection Molding, Woodhead Publishing (2018), 636 p.

  4. R. M. German and A. Bose, Injection Molding of Metals and Ceramics, Metal Powder Industries Federation (1997), p. 413.

  5. J. Tian, S. Tao, X. Qu, and S. Shang, “2:17-type SmCo magnets prepared by powder injection molding using a water-based binder,” J. Magn. Magn. Mater., 320(17), 2168 – 2117 (2008).

    Article  CAS  Google Scholar 

  6. S. Zhang, J. Tian, X. Qu, and S. Tao, “Antioxidation study of Sm(Co, Cu, Fe, Zr)z-sintered permanent magnets by metal injection molding,” J. Rare Earths, 24(5), 569 – 573 (2006).

    Article  Google Scholar 

  7. S. H. Lee, W. Lee, W. Y. Jeung, and T. J. Moon, “Properties of anisotropic Nd(Fe, Co)B type sintered magnets produced by powder injection moulding,” Powder Metall., 41(3), 185 – 188 (1998).

    Article  CAS  Google Scholar 

  8. T. Hartwig, L. Lopes, P. Wendhausen, and N. Ünal, “Metal injection molding (MIM) of NdFeB magnets,” EPJ Web Conf., 75, 04002 (2014).

  9. G. Y. Chin, “New magnetic alloys,” Science, 208(4446), 888 – 894 (1980).

    Article  CAS  Google Scholar 

  10. M. Yamashita, Sintered Fe – Cr – Co Type Magnetic Alloy and Method for Producing Article Made Therefor, Patent US4601876A United States, filed 14.12.2012, date of Patent 22.06.1986.

  11. H. Kaneko, M. Homma, and K. Nakamura, “New ductile permanent magnet of Fe – Cr – Co system,” AIP Conf. Proc., AIP, 5(1), 1088 – 1092 (1972).

  12. S. Sugimoto, H. Satoh, M. Okada, and M. Homma, “Evolution process of 〈100〉 texture in Fe – Cr – Co – Mo permanent magnets,” Mater. Trans., JIM, 32(6), 557 – 561 (1991).

    Article  CAS  Google Scholar 

  13. A. S. Ustyukhin, A. B. Ankudinov, V. A. Zelenskii, et al., “Improvement of magnetic properties by hot rolling of sintered powder alloy in the Fe – Cr – Co system,” Dokl. Phys. Chem., 476(2), 193 – 196 (2017).

    Article  CAS  Google Scholar 

  14. G. F. Korznikova, “Application of combined loading schemes for forming an ultrafine-grained structure in hard magnetic alloys of the Fe – Cr – Co system,” Fiz. Mezomekh., 20(4), 63 – 68 (2017).

    Google Scholar 

  15. M. L. Green, R. C. Sherwood, and C. C.Wong, “Powder metallurgy processing of CrCoFe permanent magnet alloys containing 5 – 25 wt.% Co,” J. Appl. Phys., 53(3), 2398 – 2400 (1982).

    Article  CAS  Google Scholar 

  16. A. A. Shatsov, “Powder materials of the Fe – Cr – Co system,” Metalloved. Term. Obrab. Met., No. 4, 17 – 20 (2004).

  17. V. V. Sergeev and T. I. Bulygina, Hard Magnetic Materials [in Russian], Énergiya, Moscow (1980), 224 p.

  18. A. V. Parkhomenko, A. P. Amosov, A. R. Samboruk, et al., “Development of domestic powder granulate with polyformaldehyde-base binder for the MIM technology,” Izv. Vysh. Uchebn. Zaved., Poroshk. Metall. Funkts. Pokr., No. 4, 8 – 13 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Gavrikov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 8, pp. 25 – 30, August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrikov, I.S., Chernyshev, B.D., Kamynin, A.V. et al. Fabrication of Granulate from a Fe – Cr – Co Alloy with Reduced Cobalt Content for Synthesizing Permanent Magnets by the MIM Process. Met Sci Heat Treat 62, 513–517 (2020). https://doi.org/10.1007/s11041-020-00594-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-020-00594-1

Key words

Navigation