Skip to main content
Log in

Experimental and numerical investigation into the corrosion performance of X100 pipeline steel under a different flow rate in CO2-saturated produced water

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of flow velocity on the corrosion behavior of X100 steel in CO2-saturated produced water (CO2-SPW) was studied. Potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) were used to study the corrosion behavior of X100 steel. X-ray diffraction (XRD), a metallurgical microscope, and a scanning electron microscope (SEM) were used to analyze corrosion product composition and morphology, respectively. The results show that the corrosion current density increases and impedance value decreases with the increase of the flow rate. The corrosion products are mainly FeCO3 and Fe3C. The corrosion degree of the bend segment is more serious than that of the straight segment. COMSOL simulation proposed the correlation between X100 corrosion behavior and material concentration and flow field distribution. A corrosion model was proposed, where the corrosion mechanism of X100 under simulated working condition was explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Rui Z, Cui K, Wang X, Lu J, Chen G (2018) A quantitative framework for evaluating unconventional well development. J Pet Sci Eng 166:900–905

    Article  CAS  Google Scholar 

  2. Rui Z, Guo T, Feng Q, Qu Z, Qi N, Gong F (2018) Influence of gravel on the propagation pattern of hydraulic fracture in the glutenite reservoir. J Pet Sci Eng 165:627–639

    Article  CAS  Google Scholar 

  3. Rui Z, Wang X, Zhang Z, Lu J, Chen G (2018) A realistic and integrated model for evaluating oil sands development with steam assisted gravity drainage technology in Canada. Appl Energy 213:76–91

    Article  Google Scholar 

  4. Qian L-Y, Fang G, Zeng P, Wang L-X (2015) Correction of flow stress and determination of constitutive constants for hot working of API X100 pipeline steel. Int J Press Vessel Pip 132-133:43–51

    Article  CAS  Google Scholar 

  5. Mahdi E, Rauf A, Eltai EO (2014) Effect of temperature and erosion on pitting corrosion of X100 steel in aqueous silica slurries containing bicarbonate and chloride content. Corros Sci 83:48–58

    Article  CAS  Google Scholar 

  6. Jin TY, Cheng YF (2011) In situ characterization by localized electrochemical impedance spectroscopy of the electrochemical activity of microscopic inclusions in an X100 steel. Corros Sci 53(2):850–853

    Article  CAS  Google Scholar 

  7. Okonkwo P, Shakoor R, Benamor A, Amer Mohamed A, Al-Marri M (2017) Corrosion behavior of API X100 steel material in a hydrogen sulfide environment. Metals 7(4):109

    Article  CAS  Google Scholar 

  8. Zhang GA, Zeng L, Huang HL, Guo XP (2013) A study of flow accelerated corrosion at elbow of carbon steel pipeline by array electrode and computational fluid dynamics simulation. Corros Sci 77:334–341

    Article  CAS  Google Scholar 

  9. Islam MA, Farhat Z (2017) Erosion-corrosion mechanism and comparison of erosion-corrosion performance of API steels. Wear 376-377:533–541

    Article  CAS  Google Scholar 

  10. Malka R, Nešić S, Gulino DA (2007) Erosion–corrosion and synergistic effects in disturbed liquid-particle flow. Wear 262(7-8):791–799

    Article  CAS  Google Scholar 

  11. Xu G, Cai L, Ullmann A, Brauner N (2016) Experiments and simulation of water displacement from lower sections of oil pipelines. J Pet Sci Eng 147(Supplement C):829–842

    Article  CAS  Google Scholar 

  12. Sun G, Zhang J, Ma C, Wang X (2016) Start-up flow behavior of pipelines transporting waxy crude oil emulsion. J Pet Sci Eng 147(Supplement C):746–755

    Article  CAS  Google Scholar 

  13. Zhang GA, Liu D, Li YZ, Guo XP (2017) Corrosion behaviour of N80 carbon steel in formation water under dynamic supercritical CO2 condition. Corros Sci 120:107–120

    Article  CAS  Google Scholar 

  14. Zhang GA, Zeng Y, Guo XP, Jiang F, Shi DY, Chen ZY (2012) Electrochemical corrosion behavior of carbon steel under dynamic high pressure H 2 S/CO 2 environment. Corros Sci 65(12):37–47

    Article  CAS  Google Scholar 

  15. Utanohara Y, Murase M (2019) Influence of flow velocity and temperature on flow accelerated corrosion rate at an elbow pipe. Nucl Eng Des 342:20–28

    Article  CAS  Google Scholar 

  16. Liu AQ, Bian C, Wang ZM, Han X, Zhang J (2018) Flow dependence of steel corrosion in supercritical CO2 environments with different water concentrations. Corros Sci 134:149–161

    Article  CAS  Google Scholar 

  17. Ajmal TS, Arya SB, Udupa KR (2019) Effect of hydrodynamics on the flow accelerated corrosion (FAC) and electrochemical impedance behavior of line pipe steel for petroleum industry. Int J Press Vessel Pip 174:42–53

    Article  CAS  Google Scholar 

  18. Liu T, Cheng YF, Sharma M, Voordouw G (2017) Effect of fluid flow on biofilm formation and microbiologically influenced corrosion of pipelines in oilfield produced water. J Pet Sci Eng 156:451–459

    Article  CAS  Google Scholar 

  19. Galvan-Martinez R, Mendoza-Flores J, Duran-Romero R, Genesca-Llongueras J (2004) Effects of turbulent flow on the corrosion kinetics of X52 pipeline steel in aqueous solutions containing H2S. Mater Corros 55(8):586–593

    Article  CAS  Google Scholar 

  20. Oliveira ESD, Pereira RFC, Melo IR, Lima MAGA, Urtiga Filho SL (2017) Corrosion behavior of API 5L X80 steel in the produced water of onshore oil recovery facilities. Mater Res 20(suppl 2):432–439

    Article  Google Scholar 

  21. Kahyarian A, Brown B, Nesic S (2017) Electrochemistry of CO2 corrosion of mild steel: effect of CO2 on iron dissolution reaction. Corros Sci 129:146–151

    Article  CAS  Google Scholar 

  22. Kahyarian A, Schumaker A, Brown B, Nesic S (2017) Acidic corrosion of mild steel in the presence of acetic acid: mechanism and prediction. Electrochim Acta 258:639–652

    Article  CAS  Google Scholar 

  23. Obot IB, Onyeachu IB, Umoren SA (2019) Alternative corrosion inhibitor formulation for carbon steel in CO2-saturated brine solution under high turbulent flow condition for use in oil and gas transportation pipelines. Corros Sci 159:108140

    Article  CAS  Google Scholar 

  24. Ruiz-Luna H, Porcayo-Calderón J, Mora-García AG, López-Báez I, Martinez-Gomez L, Muñoz-Saldaña J (2019) Corrosion performance of AISI 304 stainless steel in CO2-saturated brine solution. Prot Met Phys Chem Surf 55(6):1226–1235

    Article  CAS  Google Scholar 

  25. Majchrowicz K, Brynk T, Wieczorek M, Miedzińska D, Pakieła Z (2019) Exploring the susceptibility of P110 pipeline steel to stress corrosion cracking in CO2-rich environments. Eng Fail Anal 104:471–479

    Article  CAS  Google Scholar 

  26. Zhou S, Rabczuk T, Zhuang X (2018) Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies. Adv Eng Softw 122:31–49

    Article  Google Scholar 

  27. Song X, Yang Y, Yu D, Lan G, Wang Z, Mou X (2016) Studies on the impact of fluid flow on the microbial corrosion behavior of product oil pipelines. J Pet Sci Eng 146:803–812

    Article  CAS  Google Scholar 

  28. Thaker J, Banerjee J (2016) Influence of intermittent flow sub-patterns on erosion-corrosion in horizontal pipe. J Pet Sci Eng 145:298–320

    Article  CAS  Google Scholar 

  29. Wu JW, Bai D, Baker AP, Li ZH, Liu XB (2015) Electrochemical techniques correlation study of on-line corrosion monitoring probes. Mater Corros 66(2):143–151

    Article  CAS  Google Scholar 

  30. Richter S, Hilbert LR, Thorarinsdottir RI (2006) On-line corrosion monitoring in geothermal district heating systems. I. General corrosion rates. Corros Sci 48(7):1770–1778

    Article  CAS  Google Scholar 

  31. Richter S, Thorarinsdottir RI, Jonsdottir F (2007) On-line corrosion monitoring in geothermal district heating systems. II. Localized corrosion. Corros Sci 49(4):1907–1917

    Article  CAS  Google Scholar 

  32. Zhao J, Xiong D, Gu Y, Zeng Q, Tian B (2018) A comparative study on the corrosion behaviors of X100 steel in simulated oilfield brines under the static and dynamic conditions. J Pet Sci Eng 173:1109–1120

    Article  CAS  Google Scholar 

  33. Mohammadi F, Eliyan FF, Alfantazi A (2012) Corrosion of simulated weld HAZ of API X-80 pipeline steel. Corros Sci 63(Supplement C):323–333

    Article  CAS  Google Scholar 

  34. Ha HM, Gadala IM, Alfantazi A (2016) Hydrogen evolution and absorption in an API X100 line pipe steel exposed to near-neutral pH solutions. Electrochim Acta 204(Supplement C):18–30

    Article  CAS  Google Scholar 

  35. Eliyan FF, Mohammadi F, Alfantazi A (2012) An electrochemical investigation on the effect of the chloride content on CO2 corrosion of API-X100 steel. Corros Sci 64:37–43

    Article  CAS  Google Scholar 

  36. Eliyan FF, Alfantazi A (2014) On the theory of CO2 corrosion reactions – investigating their interrelation with the corrosion products and API-X100 steel microstructure. Corros Sci 85:380–393

    Article  CAS  Google Scholar 

  37. Gao M, Pang X, Gao K (2011) The growth mechanism of CO2 corrosion product films. Corros Sci 53(2):557–568

    Article  CAS  Google Scholar 

  38. Cui ZD, Wu SL, Zhu SL, Yang XJ (2006) Study on corrosion properties of pipelines in simulated produced water saturated with supercritical CO2. Appl Surf Sci 252(6):2368–2374

    Article  CAS  Google Scholar 

  39. Robinson DF, Hassan HA (1998) Two-equation turbulence closure model for wall bounded and free shear flows. AIAA J 36(1):109–111

    Article  CAS  Google Scholar 

  40. Wilcox DC (1992) Dilatation-dissipation corrections for advanced turbulence models. AIAA J 30(11):2639–2646

    Article  Google Scholar 

  41. Tan ZW, Zhang DL, Yang LY et al (2020) Development mechanism of local corrosion pit in X80 pipeline steel under flow conditions. Tribol Int 146:106145

    Article  CAS  Google Scholar 

Download references

Funding

The authors are recipients of the financial support from the Beijing Municipal Natural Science Foundation (Grant No. 3192013) and the National Natural Science Foundation of China (No. 51774046).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Zhao or Yanhong Gu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhao, J., Gu, Y. et al. Experimental and numerical investigation into the corrosion performance of X100 pipeline steel under a different flow rate in CO2-saturated produced water. J Solid State Electrochem 25, 993–1006 (2021). https://doi.org/10.1007/s10008-020-04868-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04868-9

Keywords

Navigation