Skip to main content
Log in

Printability and electrical conductivity of silver nanoparticle-based conductive inks for inkjet printing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Inkjet printing conductive ink was prepared with the as-prepared silver nanoparticles as conductive fillers and deionized water as the solvent and leveling agent (MY-3000) and silicone defoamer (NXZ) and wetting agent (TRITONX-405) and moisturizer (glycerol) as functional additives. We investigated the effects of viscosity and surface tension of conductive ink and the inkjet print parameters including number of nozzle, print speed, and ink droplet spacing on inkjet printability of conductive ink. The research results show that the inks with the viscosity range of 2.8–9.1 mPa·s and the surface tension of 33.4 mN·m−1 are suitable for inkjet printing. The printing accuracy of the print pattern is related to the number of nozzles and droplet space and the printing layer, but not to the printing speed, but can be changed appropriately to improve the print efficiency. When the mass content of silver nanoparticles is 6.91 wt%, the sheet resistance of the printing pattern with four layers is 2.71 Ω·cm−1, which is in appropriate printing conditions of the inkjet printing voltage of 21 V, printing speed of 60 m· S−1, ink droplet space of 20 μm, and nozzles of 2. The systematic studies of printability and electrical conductivity of inkjet printing silver nanoparticles conductive ink prove the feasibility of the ink and provide some ideas for future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Zhang, S.K. Moon, T.H. Ngo, 3D printed electronics of non-contact ink writing techniques: status and promise. Int. J. Precis. Eng. Manuf.-Green Technol. 7(2), 511–524 (2019)

    Article  Google Scholar 

  2. S. Hales, E. Tokita, R. Neupane, U. Ghosh, B. Elder, D. Wirthlin, Y.L. Kong, 3D printed nanomaterial-based electronic, biomedical, and bioelectronic devices. Nanotechnology 31(17), 172001 (2020)

    Article  CAS  Google Scholar 

  3. M.G. Mohammed, R. Kramer, All-printed flexible and stretchable electronics. Adv. Mater. 29(19), 1604965.1-1604965.7 (2017)

    Article  Google Scholar 

  4. M. Aller-Pellitero, S. Santiago-Malagón, J. Ruiz, Y. Alonso, B. Lakard, J.-Y. Hihn, G. Guirado, F.J. del Campo, Fully-printed and silicon free self-powered electrochromic biosensors: towards naked eye quantification. Sens. Actuators B 306, 127535 (2020)

    Article  Google Scholar 

  5. J. Doggart, Y. Wu, P. Liu, S. Zhu, Facile inkjet-printing self-aligned electrodes for organic thin-film transistor arrays with small and uniform channel length. ACS Appl. Mater. Interfaces. 2(8), 2189–2192 (2010)

    Article  CAS  Google Scholar 

  6. T.M. Eggenhuisen, Y. Galagan, A.F.K.V. Biezemans, T.M.W.L. Slaats, W.P. Voorthuijzen, S. Kommeren, S. Shanmugam, J.P. Teunissen, A. Hadipour, W.J.H. Verhees, S.C. Veenstra, M.J.J. Coenen, J. Gilot, R. Andriessen, W. Groen, A high efficiency, fully inkjet printed organic solar cells with freedom of design. J. Mater. Chem. 3(4), 7255–7262 (2015)

    Article  CAS  Google Scholar 

  7. R. Mikkonen, P. Puistola, I. Jönkkäri, M. Mäntysalo, Inkjet printable polydimethylsiloxane for all-inkjet-printed multilayered soft electrical applications. ACS Appl. Mater. Interfaces 12(10), 11990–11997 (2020)

    Article  CAS  Google Scholar 

  8. T. Beduk, E. Bihar, S.G. Surya, N.A. Castillo, S. Inal, K.N. Salama, A paper-based inkjet-printed PEDOT:PSS/ZnO sol-gel hydrazine sensor. Sens. Actuators B 306, 1–33 (2020)

    Article  Google Scholar 

  9. H. Souri, D. Bhattacharyya, Highly sensitive, stretchable and wearable strain sensors using fragmented conductive cotton fabric. J. Mater. Chem. C 6(39), 10524–10531 (2018)

    Article  CAS  Google Scholar 

  10. J.S. Chang, A.F. Facchetti, R. Reuss, A circuits and systems perspective of organic/printed electronics: review, challenges, and contemporary and emerging design approaches. IEEE J. Emerg. Sel. Top. Circuits Syst. 7(1), 7–26 (2017)

    Article  Google Scholar 

  11. Y. Yu, X. Xiao, Y. Zhang, K. Li, C. Yan, X. Wei, L. Chen, H. Zhen, H. Zhou, S. Zhang, Z. Zheng, Photoreactive and metal-platable copolymer inks for high-throughput, room-temperature printing of flexible metal electrodes for thin-film electronics. Adv. Mater. 28(24), 4926–4934 (2016)

    Article  CAS  Google Scholar 

  12. S. Conti, S. Lai, P. Cosseddu, A. Bonfiglio, An inkjet-printed, ultralow voltage, flexible organic field effect transistor. Adv. Mater. Technol. 2(2), 1600212 (2017)

    Article  Google Scholar 

  13. A. Sharif, J. Ouyang, A. Raza, M.A. Imran, Q.H. Abbasi, Inkjet-printed UHF RFID tag based system for salinity and sugar detection. Microw. Opt. Technol. Lett. 61(9), 2161–2168 (2019)

    Article  Google Scholar 

  14. H.A. Andersson, A. Manuilskiy, S. Haller, M. Hummelgård, J. Sidén, C. Hummelgård, H. Olin, H.-E. Nilsson, Assembling surface mounted components on ink-jet printed double sided paper circuit board. Nanotechnology 25(9), 094002 (2014)

    Article  CAS  Google Scholar 

  15. H.G. Im, S.H. Jung, J. Jin, D. Lee, J. Lee, D. Lee, J.-Y. Lee, I.-D. Kim, B.-S. Bae, Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics. ACS Nano 8(10), 10973–10979 (2014)

    Article  CAS  Google Scholar 

  16. I.J. Fernandes, A.F. Aroche, A. Schuck, P. Lamberty, C.R. Peter, W. Hasenkamp, T.L.A.C. Rocha, Silver nanoparticle conductive inks: synthesis, characterization, and fabrication of inkjet-printed flexible electrodes. Sci. Rep. 10(1), 1–11 (2020)

    Article  CAS  Google Scholar 

  17. D. Mitra, K. Mitra, V. Dzhagan, N. Pillai, D. Zahn, R. Baumann, Work function and conductivity of inkjet-printed silver layers: effect of inks and post-treatments. J. Electron. Mater. 37(3), 2135–2142 (2018)

    Article  Google Scholar 

  18. N. Reis, B. Derby, Ink jet deposition of ceramic suspensions: modeling and experiments of droplet formation. MRS Online Proc. Libr. Arch. 625, 65 (2000)

    Article  Google Scholar 

  19. M.M. Laurila, B. Khorramdel, A. Dastpak, M. Mntysalo, Statistical analysis of E-jet print parameter effects on Ag-nanoparticle ink droplet size. J. Micromech. Microeng. 27(9), 095005 (2017)

    Article  Google Scholar 

  20. Y. Gao, W. Shi, W. Wang, Y. Leng, Y. Zhao, Inkjet printing patterns of highly conductive pristine graphene on flexible substrates. Ind. Eng. Chem. Res. 53(43), 16777–16784 (2014)

    Article  CAS  Google Scholar 

  21. J.A. Lim, W.H. Lee, H.S. Lee, J.H. Lee, Y.D. Park, K. Cho, Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet. Adv. Funct. Mater 18(2), 229–234 (2008)

    Article  CAS  Google Scholar 

  22. L. Nayak, S. Mohanty, S.K. Nayak, A. Ramadoss, A review on inkjet printing of nanoparticle inks for flexible electronics. J. Mater. Chem. C 7(29), 8771–8795 (2019)

    Article  CAS  Google Scholar 

  23. J. Perelaer, J. Perelaer, P.J. Smith, M.M.P. Wijnen, E. van den Bosch, R. Echardt, P.H.J.M. Ketelaars, U.S. Schubrt, The spreading of inkjet-printed droplets with varying polymer molar mass on a dry solid substratery solid substrate. Macromol. Chem. Phys. 210, 495–502 (2009)

    Article  CAS  Google Scholar 

  24. B. Derby, Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Ann. Rev. Mater. Res. 40, 395–414 (2010)

    Article  CAS  Google Scholar 

  25. B. Derby, Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40, 395–414 (2010)

    Article  CAS  Google Scholar 

  26. H.K. Huh, S. Jung, K.W. Seo et al., Role of polymer concentration and molecular weight on the rebounding behaviors of polymer solution droplet impacting on hydrophobic surfaces. Microfluid. Nanofluid. 18(5–6), 1221–1232 (2014)

    Google Scholar 

  27. K. Woo, D. Jang, Y. Kim, J. Moon, Relationship between printability and rheological behavior of ink-jet conductive inks. Ceram. Int. 39, 7015–7021 (2013)

    Article  CAS  Google Scholar 

  28. B.-J. de Gans, E. Kazancioglu, W. Meyer, U.S. Schubert, Ink-jet printing polymers and polymer libraries using micropipettes. Macromol. Rapid Commun. 25, 292–296 (2004)

    Article  Google Scholar 

  29. D. Kim, S. Jeong, H. Shin, Y. Xia, J. Moon, Heterogeneous interfacial properties of ink-jet-printed silver nanoparticulate electrode and organic semiconductor. Adv. Mater. 20(16), 3084–3089 (2008)

    CAS  Google Scholar 

  30. M.J. Ha, Y. Xia, A.A. Green, M.J. Renn, C.H. Kim, M.C. Hersam, C.D. Frisbie, Printed sub-3V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 4(8), 4388–4395 (2010)

    Article  CAS  Google Scholar 

  31. L. Huang, Y. Huang, J. Liang, X. Wan, Y. Chen, Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 4(7), 675–684 (2011)

    Article  CAS  Google Scholar 

  32. S.Y. Chen, Y. Li, R. Jin, Y.W. Guan, H.T. Ni, Q.H. Wan, L. Li, A systematic and effective research procedure for silver nanowire ink. J. Alloy. Compd. 706, 164–175 (2017)

    Article  CAS  Google Scholar 

  33. P. He, B. Derby, Highly conductive graphene electronics by inkjet printing. Adv. Mater. Interfaces 49(3), 1765–1776 (2020)

    Google Scholar 

  34. Y. Zhang, T. Ren, J. He, Inkjet printing enabled controllable paper superhydrophobization and its applications. ACS Appl. Mater. Interfaces. 10(13), 11343–11349 (2018)

    Article  CAS  Google Scholar 

  35. M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Inkjet printing-process and its applications. Adv. Mater. 22(6), 673–685 (2010)

    Article  CAS  Google Scholar 

  36. A. Moscicki, J.F. Smolarek-Nowak et al., Ink for ink-jet printing of electrically conductive structures on flexible substrates with low thermal resistance. J. Electron. Mater. 46(7), 4100–4108 (2017)

    Article  CAS  Google Scholar 

  37. D. Reichl, G. Lager, B. Englmair, M.P. Zettl, Selective laser sintering of conductive inks for inkjet printing based on nanoparticle compositions with organic silver salts. Ussian Phys. J. 60(10), 1674–1679 (2018)

    Google Scholar 

  38. Y. Z. Zhao, D. X. Du, Y. H. Wang (2019) Preparation of silver nanoparticles and application in water-based conductive inks. Int. J. Mod. Phys. B 33(32): 1950385 (1–14)

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China under Grants of (61671140) and Zhongshan Science and Technology Projects (2018SYF10, 2019B2016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. H. Wang or E. Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y.H., Du, D.X., Xie, H. et al. Printability and electrical conductivity of silver nanoparticle-based conductive inks for inkjet printing. J Mater Sci: Mater Electron 32, 496–508 (2021). https://doi.org/10.1007/s10854-020-04828-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04828-z

Navigation