Skip to main content
Log in

Optimal feedback control problem for inhomogeneous Voigt fluid motion model

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In the present paper, we study weak solvability of the optimal feedback control problem for the inhomogeneous Voigt fluid motion model. The proof is based on the approximation-topological approach. This approach involves the approximation of the original problem by regularized operator inclusion with the consequent application of topological degree theory. Then, we show the convergence of the sequence of solutions for the approximation problem to the solution for the original problem. For this, we use independent on approximation parameter a priori estimates. Finally, we prove that the cost functional achieves its minimum on the weak solution set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    Book  Google Scholar 

  2. Abergel, F., Temam, R.: On some control problems in fluid mechanics. Theor. Comput. Fluid Dyn. 1, 303–325 (1990)

    Article  Google Scholar 

  3. Gunzburger, M.D., Hou, L., Svobodny, T.P.: Boundary velocity control of incompressible flow with an application to viscous drag reduction. SIAM J. Control Optim. 30(1), 167–181 (1992)

    Article  MathSciNet  Google Scholar 

  4. Fursikov, Fursikov, A.V.: Optimal Control of Distributed Systems. Theory and Applications. Translations of Mathematical Monographs, vol. 187. American Mathematical Society, Providence (2000)

  5. Choi, H., Temam, R., Moin, P., Kim, J.: Feedback control for unsteady flow and its application to the stochastic Burgers equation. J. Fluid Mech. 253, 509–543 (1993)

    Article  MathSciNet  Google Scholar 

  6. Filippov, A.F.: On certain questions in the theory of optimal control. J. Soc. Ind. Appl. Math. Ser. A Control 1(1), 76–84 (1962)

    Article  MathSciNet  Google Scholar 

  7. Aubin, J.-P., Cellina, A.: Differential Inclusions. Springer, Berlin (1984)

    Book  Google Scholar 

  8. Kamenskii, M., Obukhovskii, V., Zecca, P.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. Walter de Gruyter, Berlin (2001)

    Book  Google Scholar 

  9. Zvyagin, V., Obukhovskii, V., Zvyagin, A.: On inclusions with multivalued operators and their applications to some optimization problems. J. Fixed Point Theory Appl. 16, 27–82 (2014)

    Article  MathSciNet  Google Scholar 

  10. Zvyagin, V.G., Turbin, M.V.: Optimal feedback control in the mathematical model of low concentrated aqueous polymer solutions. J. Optim. Theory Appl. 148, 146–163 (2011)

    Article  MathSciNet  Google Scholar 

  11. Plotnikov, P.I., Turbin, M.V., Ustiuzhaninova, A.S.: Existence theorem for a weak solution of the optimal feedback control problem for the modified Kelvin–Voigt model of weakly concentrated aqueous polymer solutions. Dokl. Math. 100(2), 433–435 (2019)

    Article  Google Scholar 

  12. Zvyagin, V.G., Zvyagin, A.V., Turbin, M.V.: Optimal feedback control problem for the Bingham model with periodical boundary conditions on spatial variables. J. Math. Sci. 244(6), 959–980 (2020)

    Article  MathSciNet  Google Scholar 

  13. Zvyagin, A.V.: An optimal control problem with feedback for a mathematical model of the motion of weakly concentrated water polymer solutions with objective derivative. Siber. Math. J. 54, 640–655 (2013)

    Article  MathSciNet  Google Scholar 

  14. Zvyagin, V.G., Zvyagin, A.V.: Optimal feedback control for a thermoviscoelastic model of the motion of water polymer solutions. Siber. Adv. Math. 29, 137–152 (2019)

    Article  Google Scholar 

  15. Zvyagin, V., Zvyagin, A., Ustiuzhaninova, A.: Optimal feedback control problem for the fractional Voigt-\(\alpha \) model. Mathematics 8(1197), 1–27 (2020)

    Google Scholar 

  16. Zvyagin, A.V.: Optimal feedback control for a thermoviscoelastic model of Voigt fluid motion. Dokl. Math. 93(3), 270–272 (2016)

    Article  MathSciNet  Google Scholar 

  17. Zvyagin, A.V.: Optimal feedback control for Leray and Navier–Stokes alpha models. Dokl. Math. 99(3), 299–302 (2019)

    Article  MathSciNet  Google Scholar 

  18. Kazhikhov, A.V.: Solvability of the initial and boundary-value problem for the equations of motions of an inhomogeneous viscous incompressible fluid. Dokl. Akad. Nauk SSSR 216(5), 1008–1010 (1974) (in Russian)

  19. Lions, P.-L.: Mathematical Topics in Fluid Mechanics. Incompressible Models, vol. 1. Clarendon Press, Oxford (1996)

    MATH  Google Scholar 

  20. Simon, J.: Nonhomogeneous viscous incompressible fluids: existence of velocity, density and pressure. SIAM J. Math. Anal. 21(5), 1093–1117 (1990)

    Article  MathSciNet  Google Scholar 

  21. Antontsev, S.N., de Oliveira, H.B., Khompysh, Kh.: Existence and large time behavior for generalized Kelvin-Voigt equations governing nonhomogeneous and incompressible fluids. IOP Conf. Ser. J. Phys. Conf. Ser. 1268, 012008 (2019)

  22. Antontsev, S.N., de Oliveira, H.B., Khompysh, K.: Generalized Kelvin–Voigt equations for nonhomogeneous and incompressible fluids. Commun. Math. Sci. 17(7), 1915–1948 (2019)

    Article  MathSciNet  Google Scholar 

  23. Betchov, R., Criminale, W.O.: Problems of Hydrodynamic Stability. Mir, Moscow (1971) (in Russian) (Possibly translation of: Betchov, R., Criminale, W.O.: Stability of Parallel Flows. Academic Press, New York (1967))

  24. Oskolkov, A.P.: Some nonstationary linear and quasilinear systems occurring in the investigation of the motion of viscous fluids. J. Math. Sci. 10, 299–335 (1978)

  25. Oskolkov, A.P.: Theory of nonstationary flows of Kelvin-Voigt fluids. J. Math. Sci. 28, 751–758 (1985)

    Article  Google Scholar 

  26. Oskolkov, A.P.: Initial-boundary value problems for equations of motion of Kelvin–Voight fluids and Oldroyd fluids. Proc. Steklov Inst. Math. 179, 137–182 (1989)

    MATH  Google Scholar 

  27. Oskolkov, A.P.: Nonlocal problems for the equations of motion of Kelvin-Voight fluids. J. Math. Sci. 75, 2058–2078 (1995)

    Article  MathSciNet  Google Scholar 

  28. Kalantarov, V.K.: Attractors for some nonlinear problems of mathematical physics. Zapiski Naucnyh Seminarov Leningradskogo Otdelenija Matematiceskogo Instituta im. V. A. Steklova Akademii Nauk SSSR (LOMI) 152, 50–54 (1986) (in Russian)

  29. Kalantarov, V.K., Levant, B., Titi, E.S.: Gevrey regularity for the attractor of the 3D Navier–Stokes–Voight equations. J. Nonlinear Sci. 19, 133–152 (2009)

    Article  MathSciNet  Google Scholar 

  30. Kaya, M., Celebi, A.O.: Existence of weak solutions of the g-Kelvin–Voight equation. Math. Comput. Model. 49, 497–504 (2009)

    Article  MathSciNet  Google Scholar 

  31. Baranovskii, E.S.: Strong solutions of the incompressible Navier–Stokes–Voigt model. Mathematics 8, 181 (2020)

    Article  Google Scholar 

  32. Zvyagin, V.G., Turbin, M.V.: The study of initial-boundary value problems for mathematical models of the motion of Kelvin–Voigt fluids. J. Math. Sci. 168, 157–308 (2010)

    Article  MathSciNet  Google Scholar 

  33. Turbin, M.V.: Research of a mathematical model of low-concentrated aqueous polymer solutions. Abstr. Appl. Anal. 2006, 1–27 (2006)

    Article  MathSciNet  Google Scholar 

  34. Turbin, M.V., Ustiuzhaninova. A.S.: The existence theorem for a weak solution to initial-boundary value problem for system of equations describing the motion of weak aqueous polymer solutions. Russ. Math. 63(8), 54–69 (2019)

  35. Zvyagin, V., Vorotnikov, D.: Topological approximation methods for evolutionary problems of nonlinear hydrodynamics. de Gruyter Series in Nonlinear Analysis and Applications, vol. 12. Walter de Gruyter, Berlin (2008)

  36. Zvyagin, V.G., Turbin, M.V.: Mathematical problems in viscoelastic hydrodynamics. Krasand URSS, Moscow (2012) (in Russian)

  37. Zvyagin, V.G., Turbin, M.V.: The optimal feedback control problem for Voigt model with variable density. Russ. Math. 64(4), 80–84 (2020)

    Article  Google Scholar 

  38. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flows. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  39. Solonnikov, V.A.: On estimates of Green’s tensors for certain boundary problems. Dokl. Akad. Nauk SSSR 130(5), 988–991 (1960) (in Russian)

  40. Vorovich, I.I., Yudovich, V.I.: Stationary flows of incompressible viscous fluids. Math. Sb. 53(4), 393–428 (1961) (in Russian)

  41. Zvyagin, V.: Topological approximation approach to study of mathematical problems of hydrodynamics. J. Math. Sci. 201(6), 830–858 (2014)

    Article  MathSciNet  Google Scholar 

  42. Simon, J.: Compact sets in the space \(L^p(0, T; B)\). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    Article  MathSciNet  Google Scholar 

  43. Gajewski, H., Groger, K., Zacharias, K.: Nichtlineare operatorgleichungen und operatordifferentialgleichungen. Akademie Verlag, Berlin (1974)

    MATH  Google Scholar 

  44. Zvyagin, V.G., Orlov, V.P.: Solvability of one non-Newtonian fluid dynamics model with memory. Nonlinear Anal. 172, 73–98 (2018)

    Article  MathSciNet  Google Scholar 

  45. Ambrosio, L.: Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158, 227–260 (2004)

    Article  MathSciNet  Google Scholar 

  46. Crippa, G., de Lellis, C.: Estimates and regularity results for the diPerna–Lions flow. J. Reine Angew. Math. 616, 15–46 (2008)

    MathSciNet  MATH  Google Scholar 

  47. DiPerna, R.J., Lions, P.L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  Google Scholar 

  48. Zhikov, V.V., Pastukhova, S.E.: On the Navier–Stokes equations: existence theorems and energy equalities. Proc. Steklov Inst. Math. 278, 67–87 (2012)

    Article  MathSciNet  Google Scholar 

  49. Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications. Springer, New York (1972)

    Book  Google Scholar 

  50. Vulih, B.Z.: A Brief Course in the Theory of Functions of a Real Variable: An Introduction to the Theory of the Integral. Mir, Moskow (1976) (in Russian)

Download references

Acknowledgements

The authors are very grateful to an anonymous referee for careful reading of the paper and helpful comments. Funding The research of Victor Zvyagin (Theorem 1.2) was supported by the Russian Science Foundation, Project No. 19-11-00146. The research of Mikhail Turbin (Theorem 1.4) was supported by the Russian Foundation for Basic Research, Project No. 20-01-00051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Turbin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvyagin, V., Turbin, M. Optimal feedback control problem for inhomogeneous Voigt fluid motion model. J. Fixed Point Theory Appl. 23, 4 (2021). https://doi.org/10.1007/s11784-020-00838-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11784-020-00838-w

Keywords

Mathematics Subject Classification

Navigation